Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt = prompt, | |
width = width, | |
height = height, | |
num_inference_steps = num_inference_steps, | |
generator = generator, | |
guidance_scale=0.0 | |
).images[0] | |
return image, seed | |
examples = [ | |
"Create a new logo for a tech startup", | |
"Design an engaging Instagram post for a fashion brand", | |
"Create a new character for a social media campaign", | |
"Generate a marketing advertisement for a new product launch", | |
"Design a social media banner for a charity event", | |
"Create a new branding concept for a luxury hotel", | |
"Design a promotional video thumbnail for a movie premiere", | |
"Generate a marketing campaign for a sustainable lifestyle brand" | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 800px; | |
padding: 20px; | |
border-radius: 10px; | |
box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1); | |
} | |
#title { | |
text-align: center; | |
font-size: 32px; | |
font-weight: bold; | |
margin-bottom: 20px; | |
} | |
#prompt { | |
margin-bottom: 20px; | |
} | |
#result { | |
margin-bottom: 20px; | |
} | |
#advanced-settings { | |
margin-bottom: 20px; | |
} | |
#footer { | |
text-align: center; | |
font-size: 14px; | |
color: #888; | |
} | |
""" | |
footer = """ | |
<div id="footer"> | |
<a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> | | |
<a href="https://github.com/arad1367" target="_blank">GitHub</a> | | |
<a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a> | | |
<a href="https://huggingface.co/black-forest-labs/FLUX.1-schnell" target="_blank">black-forest-labs/FLUX.1-schnell</a> | |
<br> | |
Made with π by Pejman Ebrahimi | |
</div> | |
""" | |
with gr.Blocks(css=css, theme='gradio/soft') as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(""" | |
# FLUX.1 Schnell Marketing Assistant | |
This app uses the FLUX.1 Schnell model to generate high-quality images based on your prompt. Use it to create new logos, social media content, marketing advertisements, and more. | |
""", elem_id="title") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
elem_id="prompt" | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False, elem_id="result") | |
with gr.Accordion("Advanced Settings", open=False, elem_id="advanced-settings"): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=4, | |
) | |
gr.Examples( | |
examples = examples, | |
fn = infer, | |
inputs = [prompt], | |
outputs = [result, seed], | |
cache_examples="lazy" | |
) | |
gr.HTML(footer) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn = infer, | |
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps], | |
outputs = [result, seed] | |
) | |
demo.launch() | |