import streamlit as st import os import datetime as DT import pytz import time import json import re import random import string from transformers import AutoTokenizer from tools import toolsInfo from dotenv import load_dotenv load_dotenv() useGpt4 = os.environ.get("USE_GPT_4") == "1" if useGpt4: from openai import OpenAI client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY")) MODEL = "gpt-4o-mini" TOOLS_MODEL = "gpt-4o-mini" MAX_CONTEXT = 128000 tokenizer = AutoTokenizer.from_pretrained("Xenova/gpt-4o") else: from groq import Groq client = Groq( api_key=os.environ.get("GROQ_API_KEY"), ) MODEL = "llama-3.1-70b-versatile" # MODEL = "llama3-groq-70b-8192-tool-use-preview" TOOLS_MODEL = "llama3-groq-70b-8192-tool-use-preview" MAX_CONTEXT = 8000 tokenizer = AutoTokenizer.from_pretrained("Xenova/Meta-Llama-3.1-Tokenizer") def countTokens(text): text = str(text) tokens = tokenizer.encode(text, add_special_tokens=False) return len(tokens) SYSTEM_MSG = """ You are a personalized email generator for cold outreach. You take the user through the below workflow. Keep your questions crisp. Ask only one question at a time. # You ask about the purpose of sending email. Give well-formatted numbered options to choose from for the email purpose. Group the options by category as described below. Give numbers only to the options and not categories. Give a line break after every category name. ##### Category: Acquiring Customers - Lead Generation (spark interest in possible customers) - Sales Outreach (directly ask the decision-makers) - Partnership and Collaboration (build mutually beneficial relationships) - Event Promotion (invite people to webinars, conferences, or other events) - Case study or testimonial requests (ask satisfied customers for testimonials) ##### Category: Learning and Connecting - Networking (establish connections with industry experts) - Market Research (gather information about target audiences or industries) - Career Advice (seek guidance from experienced professionals) ##### Category: Jobs and Hiring - Job Application (apply for job openings) - Job Referrals (ask for referrals or recommendations) - Recruitment (reach out to potential candidates) # You then ask sender (user) details. Whatever could be relevant for this type of email # You ask for recipient's Industry, if it's required for this type of email # You ask for recipient's Role in the company, if it's required for this type of email # You ask for any other specific details required to draft this type of mail # Once all these details are received, you save them in a Google Sheet # You then check with the user if they can see details in the sheet. # Once the user ackowledges, you move to the next phase of email generation. Based on the above info, you draft 2 very different variations of email and check the user which one they're liking more. Keep the email body in sections separated by divider "-----". Give numbered options at the end to choose from. Ask them if they want to finalize it. If they don't finalize, repeat doing it till the user finalizes on one. Check with them what they would like to change in the variation. # Once the mail is finalized. You ask the user for all the missing placeholder values to write the final mail. # Once the placeholder values are available in the final email, you ask for the recipient email ID. # Once you have the final mail with placeholder values and recipient exact email ID, you send the email to this id. Dont send email until you have received a valid email from user. # You congratulate the user and ask if he would like to save this email as a template. If he agrees, save this template in Google Sheet. # Repeat the process for more profiles and recipients. """ USER_ICON = "icons/man.png" ASSISTANT_ICON = "icons/magic-wand-1.png" TOOL_ICON = "icons/check.png" IMAGE_LOADER = "icons/ripple.svg" TEXT_LOADER = "icons/balls.svg" START_MSG = "Let's start 😊" ROLE_TO_AVATAR = { "user": USER_ICON, "assistant": ASSISTANT_ICON, "tool": TOOL_ICON, } st.set_page_config( page_title="EmailGenie", page_icon=ASSISTANT_ICON, ) ipAddress = st.context.headers.get("x-forwarded-for") def __nowInIST() -> DT.datetime: return DT.datetime.now(pytz.timezone("Asia/Kolkata")) def pprint(log: str): now = __nowInIST() now = now.strftime("%Y-%m-%d %H:%M:%S") print(f"[{now}] [{ipAddress}] {log}") pprint("\n") st.markdown( """ """, unsafe_allow_html=True ) def __isInvalidResponse(response: str): # new line followed by small case char if len(re.findall(r'\n[a-z]', response)) > 3: return True # lot of repeating words if len(re.findall(r'\b(\w+)(\s+\1){2,}\b', response)) > 1: return True # lots of paragraphs if len(re.findall(r'\n\n', response)) > 25: return True def __resetButtonState(): st.session_state["buttonValue"] = "" def __setStartMsg(msg): st.session_state.startMsg = msg if "chatHistory" not in st.session_state: st.session_state.chatHistory = [] if "messages" not in st.session_state: st.session_state.messages = [] if "buttonValue" not in st.session_state: __resetButtonState() if "startMsg" not in st.session_state: st.session_state.startMsg = "" st.session_state.toolResponseDisplay = {} def __getMessages(): def getContextSize(): currContextSize = countTokens(SYSTEM_MSG) + countTokens(st.session_state.messages) + 100 pprint(f"{currContextSize=}") return currContextSize while getContextSize() > MAX_CONTEXT: pprint("Context size exceeded, removing first message") st.session_state.messages.pop(0) return st.session_state.messages tools = [ toolsInfo["saveProfileDetailsInGSheet"]["schema"], toolsInfo["saveTemplateInGSheet"]["schema"], toolsInfo["sendEmail"]["schema"], ] def __showToolResponse(toolResponseDisplay: dict): msg = toolResponseDisplay.get("text") icon = toolResponseDisplay.get("icon") col1, col2 = st.columns([1, 20]) with col1: st.image( icon or TOOL_ICON, width=30 ) with col2: if "`" not in msg: st.markdown(f"`{msg}`") else: st.markdown(msg) def __process_stream_chunk(chunk): delta = chunk.choices[0].delta if delta.content: return delta.content elif delta.tool_calls: return delta.tool_calls[0] return None def __addToolCallToMsgs(toolCall: dict): st.session_state.messages.append( { "role": "assistant", "tool_calls": [ { "id": toolCall.id, "function": { "name": toolCall.function.name, "arguments": toolCall.function.arguments, }, "type": toolCall.type, } ], } ) def __processToolCalls(toolCalls): for toolCall in toolCalls: functionName = toolCall.function.name functionToCall = toolsInfo[functionName]["func"] functionArgsStr = toolCall.function.arguments pprint(f"{functionName=} | {functionArgsStr=}") functionArgs = json.loads(functionArgsStr) functionResult = functionToCall(**functionArgs) functionResponse = functionResult.get("response") responseDisplay = functionResult.get("display") pprint(f"{functionResponse=}") if responseDisplay: __showToolResponse(responseDisplay) st.session_state.toolResponseDisplay = responseDisplay __addToolCallToMsgs(toolCall) st.session_state.messages.append( { "role": "tool", "tool_call_id": toolCall.id, "name": functionName, "content": functionResponse, } ) def __dedupeToolCalls(toolCalls: list): toolCallsDict = {} for toolCall in toolCalls: toolCallsDict[toolCall.function.name] = toolCall dedupedToolCalls = list(toolCallsDict.values()) if len(toolCalls) != len(dedupedToolCalls): pprint("Deduped tool calls!") pprint(f"{toolCalls=} -> {dedupedToolCalls=}") return dedupedToolCalls def __getRandomToolId(): return ''.join( random.choices( string.ascii_lowercase + string.digits, k=4 ) ) def predict(model: str = None): model = model or MODEL messagesFormatted = [{"role": "system", "content": SYSTEM_MSG}] messagesFormatted.extend(__getMessages()) contextSize = countTokens(messagesFormatted) pprint(f"{contextSize=} | {model}") pprint(f"{messagesFormatted=}") response = client.chat.completions.create( model=model, messages=messagesFormatted, temperature=0.5, max_tokens=4000, stream=False, tools=tools ) responseMessage = response.choices[0].message # pprint(f"{responseMessage=}") responseContent = responseMessage.content # pprint(f"{responseContent=}") if responseContent and '(.*?)', responseContent) # if function_match: # function_name, function_args = function_match.groups() # toolCalls = [ # { # "id": __getRandomToolId(), # "type": "function", # "function": { # "name": function_name, # "arguments": function_args # } # } # ] # responseContent = None # Set content to None as it's a function call # else: # toolCalls = None # else: # toolCalls = responseMessage.tool_calls if responseContent: yield responseContent toolCalls = responseMessage.tool_calls # pprint(f"{toolCalls=}") if toolCalls: pprint(f"{toolCalls=}") toolCalls = __dedupeToolCalls(toolCalls) try: __processToolCalls(toolCalls) return predict() except Exception as e: pprint(e) st.title("EmailGenie 📧🧞‍♂️") if not (st.session_state["buttonValue"] or st.session_state["startMsg"]): st.button(START_MSG, on_click=lambda: __setStartMsg(START_MSG)) for chat in st.session_state.chatHistory: role = chat["role"] content = chat["content"] imagePath = chat.get("image") toolResponseDisplay = chat.get("toolResponseDisplay") avatar = ROLE_TO_AVATAR[role] with st.chat_message(role, avatar=avatar): st.markdown(content) if toolResponseDisplay: __showToolResponse(toolResponseDisplay) if imagePath: st.image(imagePath) if prompt := (st.chat_input() or st.session_state["buttonValue"] or st.session_state["startMsg"]): __resetButtonState() __setStartMsg("") with st.chat_message("user", avatar=USER_ICON): st.markdown(prompt) pprint(f"{prompt=}") st.session_state.chatHistory.append({"role": "user", "content": prompt }) st.session_state.messages.append({"role": "user", "content": prompt }) with st.chat_message("assistant", avatar=ASSISTANT_ICON): responseContainer = st.empty() def __printAndGetResponse(): response = "" # responseContainer.markdown(".....") responseContainer.image(TEXT_LOADER) responseGenerator = predict() for chunk in responseGenerator: response += chunk if __isInvalidResponse(response): pprint(f"Invalid_{response=}") return responseContainer.markdown(response) return response response = __printAndGetResponse() while not response: pprint("Empty response. Retrying..") time.sleep(0.5) response = __printAndGetResponse() pprint(f"{response=}") def selectButton(optionLabel): st.session_state["buttonValue"] = optionLabel pprint(f"Selected: {optionLabel}") toolResponseDisplay = st.session_state.toolResponseDisplay st.session_state.chatHistory.append({ "role": "assistant", "content": response, "toolResponseDisplay": toolResponseDisplay }) st.session_state.messages.append({ "role": "assistant", "content": response, })