import gradio as gr from PIL import Image, ImageDraw, ImageFont import scipy.io.wavfile as wavfile # Use a pipeline as a high-level helper from transformers import pipeline # model_path = ("../Models/models--facebook--detr-resnet-50/snapshots" # "/1d5f47bd3bdd2c4bbfa585418ffe6da5028b4c0b") # object_detector = pipeline("object-detection", # model=model_path) object_detector = pipeline("object-detection", model="facebook/detr-resnet-50") narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs") # Define the function to generate audio from text def generate_audio(text): # Generate the narrated text narrated_text = narrator(text) # Save the audio to a WAV file wavfile.write("output.wav", rate=narrated_text["sampling_rate"], data=narrated_text["audio"][0]) # Return the path to the saved audio file return "output.wav" def read_objects(detection_objects): # Initialize counters for each object label object_counts = {} # Count the occurrences of each label for detection in detection_objects: label = detection['label'] if label in object_counts: object_counts[label] += 1 else: object_counts[label] = 1 # Generate the response string response = "This picture contains" labels = list(object_counts.keys()) for i, label in enumerate(labels): response += f" {object_counts[label]} {label}" if object_counts[label] > 1: response += "s" if i < len(labels) - 2: response += "," elif i == len(labels) - 2: response += " and" response += "." return response def draw_bounding_boxes(image, detections, font_path=None, font_size=50): # Make a copy of the image to draw on draw_image = image.copy() draw = ImageDraw.Draw(draw_image) # Load custom font or default font if path not provided if font_path: font = ImageFont.truetype(font_path, font_size) else: # When font_path is not provided, load default font but its size is fixed font = ImageFont.load_default() # Increase font size workaround by using a TTF font file, if needed, can download and specify the path for detection in detections: box = detection['box'] xmin = box['xmin'] ymin = box['ymin'] xmax = box['xmax'] ymax = box['ymax'] # Draw the bounding box draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=5) # Optionally, you can also draw the label and score label = detection['label'] score = detection['score'] text = f"{label} {score:.2f}" # Draw text with background rectangle for visibility if font_path: # Use the custom font with increased size text_size = draw.textbbox((xmin, ymin), text, font=font) else: # Calculate text size using the default font text_size = draw.textbbox((xmin, ymin), text) draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill="red") draw.text((xmin, ymin), text, fill="white", font=font) return draw_image def detect_object(image): raw_image = image output = object_detector(raw_image) processed_image = draw_bounding_boxes(raw_image, output) natural_text = read_objects(output) processed_audio = generate_audio(natural_text) return processed_image, processed_audio examples = [["example{}.jpg".format(i)] for i in range(1, 4)] demo = gr.Interface(fn=detect_object, inputs=[gr.Image(label="Select Image",type="pil")], theme='freddyaboulton/dracula_revamped', outputs=[gr.Image(label="Processed Image", type="pil"), gr.Audio(label="Generated Audio")], examples = examples, title="Object Detector", description="Detect objects in the input image with bounding boxes with audio description.") demo.launch()