fartashf pcuenq HF Staff commited on
Commit
2a5918f
·
verified ·
1 Parent(s): 02f656c

Update organization card with MobileCLIP 2 and FastVLM (#3)

Browse files

- Update organization card with MobileCLIP 2 and FastVLM (6ae5617bf095b33292866c2736500ab4620ad3b0)


Co-authored-by: Pedro Cuenca <[email protected]>

Files changed (1) hide show
  1. README.md +3 -0
README.md CHANGED
@@ -14,6 +14,7 @@ Welcome to the official Hugging Face organization for Apple!
14
  [Core ML](https://developer.apple.com/machine-learning/core-ml/) is optimized for on-device performance of a broad variety of model types by leveraging Apple Silicon and minimizing memory footprint and power consumption.
15
 
16
  * Models
 
17
  - [Depth Anything V2 Core ML](https://huggingface.co/collections/apple/core-ml-depth-anything-66727e780bc71c005763baf9): State-of-the-art depth estimation
18
  - [DETR Resnet50 Core ML](https://huggingface.co/apple/coreml-detr-semantic-segmentation): Semantic Segmentation
19
  - [FastViT Core ML](https://huggingface.co/collections/apple/core-ml-fastvit-666b782d98d6421a15237897): Image Classification
@@ -25,6 +26,8 @@ Welcome to the official Hugging Face organization for Apple!
25
  Open research to enable the community to deliver amazing experiences that improve the lives of millions of people every day.
26
 
27
  * Models
 
 
28
  - [DepthPro](https://huggingface.co/collections/apple/depthpro-models-66fee63b2f0dc1b231375ca6): State-of-the-art monocular depth estimation.
29
  - OpenELM [Base](https://huggingface.co/collections/apple/openelm-pretrained-models-6619ac6ca12a10bd0d0df89e) | [Instruct](https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d7ae9f868b759ca): open, Transformer-based language model.
30
  - [MobileCLIP](https://huggingface.co/collections/apple/mobileclip-models-datacompdr-data-665789776e1aa2b59f35f7c8): Mobile-friendly image-text models.
 
14
  [Core ML](https://developer.apple.com/machine-learning/core-ml/) is optimized for on-device performance of a broad variety of model types by leveraging Apple Silicon and minimizing memory footprint and power consumption.
15
 
16
  * Models
17
+ - [FastVLM Core ML](https://huggingface.co/models?library=coreml&other=ml-fastvlm): On-device Vision-Language Model.
18
  - [Depth Anything V2 Core ML](https://huggingface.co/collections/apple/core-ml-depth-anything-66727e780bc71c005763baf9): State-of-the-art depth estimation
19
  - [DETR Resnet50 Core ML](https://huggingface.co/apple/coreml-detr-semantic-segmentation): Semantic Segmentation
20
  - [FastViT Core ML](https://huggingface.co/collections/apple/core-ml-fastvit-666b782d98d6421a15237897): Image Classification
 
26
  Open research to enable the community to deliver amazing experiences that improve the lives of millions of people every day.
27
 
28
  * Models
29
+ - [MobileCLIP 2](https://huggingface.co/collections/apple/mobileclip2-68ac947dcb035c54bcd20c47): Mobile-friendly SOTA image-text models.
30
+ - [FastVLM](https://huggingface.co/collections/apple/fastvlm-68ac97b9cd5cacefdd04872e): Efficient Vision Language Models.
31
  - [DepthPro](https://huggingface.co/collections/apple/depthpro-models-66fee63b2f0dc1b231375ca6): State-of-the-art monocular depth estimation.
32
  - OpenELM [Base](https://huggingface.co/collections/apple/openelm-pretrained-models-6619ac6ca12a10bd0d0df89e) | [Instruct](https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d7ae9f868b759ca): open, Transformer-based language model.
33
  - [MobileCLIP](https://huggingface.co/collections/apple/mobileclip-models-datacompdr-data-665789776e1aa2b59f35f7c8): Mobile-friendly image-text models.