import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # بارگذاری مدل و توکنایزر از Hugging Face MODEL_NAME = "meta-llama/Llama-2-7b-chat-hf" # مدل Llama 2 (نسخه Chat) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map="auto") # تعریف تابع پاسخ‌دهی def respond( message: str, history: list[tuple[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, ): # ساختن prompt از پیام‌های قبلی context = f"{system_message}\n" for user_message, bot_response in history: context += f"User: {user_message}\nBot: {bot_response}\n" context += f"User: {message}\nBot:" # تولید پاسخ inputs = tokenizer(context, return_tensors="pt", padding=True, truncation=True) outputs = model.generate( inputs["input_ids"], max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, pad_token_id=tokenizer.eos_token_id, ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) response = response.split("Bot:")[-1].strip() # استخراج پاسخ yield response # رابط کاربری Gradio demo = gr.ChatInterface( fn=respond, additional_inputs=[ gr.Textbox( value="You are an advanced and friendly assistant.", label="System message", ), gr.Slider( minimum=10, maximum=1024, value=256, step=1, label="Max new tokens" ), gr.Slider( minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature" ), gr.Slider( minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p" ), ], title="Advanced Chatbot with Llama 2", description="A conversational AI based on Llama 2 fine-tuned for chat.", ) if __name__ == "__main__": demo.launch()