File size: 6,710 Bytes
718b08a 2c39f27 7f5897e 718b08a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
# helper functions to get segmented mask
import gradio as gr
import os
from PIL import Image
import urllib
import shutil
url = "http://static.okkular.io/scripted.model"
output_file = "./scripted.model"
with urllib.request.urlopen(url) as response, open(output_file, 'wb') as out_file:
shutil.copyfileobj(response, out_file)
def get_stl(input_sku):
preds=shop_the_look(f'./data/dress_{input_sku}.jpg')
ret_bag = preds['./segs/bag.jpg'][1]
ret_shoes = preds['./segs/shoe.jpg'][1]
return Image.open(f'./data/dress_{input_sku}.jpg'), Image.open(ret_bag), Image.open(ret_shoes)
sku = gr.Dropdown(
["1", "2", "3", '4', '5'], label="Dress Sku",
),
demo = gr.Interface(get_stl, gr.Dropdown(
["1", "2", "3", '4', '5'], label="Dress Sku"), ["image", "image", "image"])
demo.launch(root_path=f"/{os.getenv('TOKEN')}")
from PIL import Image, ImageChops
import numpy as np
from transformers import AutoFeatureExtractor, SegformerForSemanticSegmentation
from PIL import Image
import requests
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import os
import nmslib
from fastai.vision.all import *
def get_segment(image, num,ret=False):
extractor = AutoFeatureExtractor.from_pretrained("mattmdjaga/segformer_b2_clothes")
model = SegformerForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b2_clothes")
inputs = extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits.cpu()
upsampled_logits = nn.functional.interpolate(
logits,
size=image.size[::-1],
mode="bilinear",
align_corners=False,
)
#pred_seg = upsampled_logits.argmax(dim=1)[0]
pred_seg = upsampled_logits.argmax(dim=1)[0]
np_im = np.array(image)
pred_seg[pred_seg != num] = 0
mask = pred_seg.detach().cpu().numpy()
# masked region
np_im[mask.squeeze()==0] = 0
# white bg
np_im[np.where((np_im==[0,0,0]).all(axis=2))] = [255,255,255]
# trim extra whitespace
im = Image.fromarray(np.uint8(np_im)).convert('RGB')
im = trim(im)
if ret==False:
plt.imshow(im)
plt.show()
elif ret==True:
print('here and returning', im)
return im
def trim(im):
bg = Image.new(im.mode, im.size, im.getpixel((0,0)))
diff = ImageChops.difference(im, bg)
diff = ImageChops.add(diff, diff, 2.0, -100)
bbox = diff.getbbox()
if bbox:
return im.crop(bbox)
def get_pred_seg(image_url):
extractor = AutoFeatureExtractor.from_pretrained("mattmdjaga/segformer_b2_clothes")
model = SegformerForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b2_clothes")
image = Image.open(image_url)
inputs = extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits.cpu()
upsampled_logits = nn.functional.interpolate(
logits,
size=image.size[::-1],
mode="bilinear",
align_corners=False,
)
pred_seg = upsampled_logits.argmax(dim=1)[0]
#plt.imshow(pred_seg)
return upsampled_logits,pred_seg
#### get predictions and neighbours
def get_predictions(feed):
pairs = [[x["sku"], x["category"]] for x in feed]
skus, labels = zip(*pairs)
labels = np.array(labels)
skus = np.array(skus)
categories = list(set(labels))
def get_image_fpath(x):
return x[0]
data = DataBlock(
blocks=(ImageBlock, CategoryBlock),
get_x = get_image_fpath,
get_y = ItemGetter(1),
item_tfms=[Resize(256)],
batch_tfms=[Normalize.from_stats(*imagenet_stats)],
splitter=IndexSplitter([])
)
dls = data.dataloaders(
pairs,
device=default_device(),
shuffle_fn=lambda x:x,
drop_last=False
)
#model = torch.jit.load("../inference_script/scripted.model").cpu()
#model = torch.jit.load("scripted.model").cuda()
with open('./scripted.model', 'rb') as f:
buffer = io.BytesIO(f.read())
# Load all tensors to the original device
model = torch.jit.load(buffer, map_location=torch.device('cpu'))
preds_list = []
with torch.no_grad():
for x,y in progress_bar(iter(dls.train), total=len(dls.train)):
pred = model(x)
preds_list.append(pred)
preds = torch.cat(preds_list)
preds = to_np(preds)
predictions_json = {}
for cat in categories:
filtered_preds = preds[labels == cat]
filtered_skus = skus[labels==cat]
neighbours,dists = get_neighbours(filtered_preds)
#neighbours = neighbours[:,1:]
for i, sku in enumerate(filtered_skus):
predictions_json[sku] = [filtered_skus[j] for j in neighbours[i]]
return predictions_json
INDEX_TIME_PARAMS = {'M': 100, 'indexThreadQty': 8,
'efConstruction': 2000, 'post': 0}
QUERY_TIME_PARAMS = {"efSearch": 2000}
N_NEIGHBOURS = 4
def get_neighbours(embeddings):
index = nmslib.init(method='hnsw', space='l2')
index.addDataPointBatch(embeddings)
index.createIndex(INDEX_TIME_PARAMS)
index.setQueryTimeParams(QUERY_TIME_PARAMS)
res = index.knnQueryBatch(
embeddings, k=min(N_NEIGHBOURS+1, embeddings.shape[0]), num_threads=8)
proc_res = [l[None] for (l, d) in res]
neighbours = np.concatenate(proc_res).astype(np.int32)
dists = np.array([d for (_, d) in res]).astype(np.float32)
return neighbours , dists
def shop_the_look(prod):
#upsampled_logits, all_segs = get_pred_seg(prod)
bag_segment=get_segment(Image.open(prod), 16, ret=True)
bag_segment.save('./segs/bag.jpg')
shoe_l = get_segment(Image.open(prod), 9, True)#left shoe
shoe_r = get_segment(Image.open(prod), 10, True) #right shoe
shoe_segment = concat_h(shoe_l, shoe_r)
shoe_segment.save('./segs/shoe.jpg')
feed= []
main_prods=os.listdir('./data')
for sku in main_prods:
if 'checkpoint' not in sku:
cat = sku.split('_')[0]
x={'sku':f'./data/{sku}', 'category':cat}
feed.append(x)
feed.extend([{'sku':'./segs/shoe.jpg',
'category':'shoes'},
{'sku':'./segs/bag.jpg',
'category':'bag'}])
preds=get_predictions(feed)
return preds
def concat_h(image1,image2):
#resize, first image
image1 = image1.resize((426, 240))
image1_size = image1.size
image2_size = image2.size
new_image = Image.new('RGB',(2*image1_size[0], image1_size[1]), (250,250,250))
new_image.paste(image1,(0,0))
new_image.paste(image2,(image1_size[0],0))
return new_image |