import subprocess from huggingface_hub import HfApi, hf_hub_download import gradio as gr subprocess.run(["git", "clone", "https://github.com/huggingface/diffusers.git", "diffs"]) def error_str(error, title="Error"): return f"""#### {title} {error}""" def url_to_model_id(model_id_str): return model_id_str.split("/")[-2] + "/" + model_id_str.split("/")[-1] if model_id_str.startswith("https://huggingface.co/") else model_id_str def get_ckpt_names(model_id = "nitrosocke/mo-di-diffusion"): if model_id == "": return error_str("Please enter a model name.", title="Invalid input"), None, None try: api = HfApi() ckpt_files = [f for f in api.list_repo_files(url_to_model_id(model_id)) if f.endswith(".ckpt")] if len(ckpt_files) == 0: return error_str("No checkpoint files found in the model repo."), None, None return None, gr.update(choices=ckpt_files, visible=True), gr.update(visible=True), "\n".join([f"- {ckpt_file.rfilename}" for ckpt_file in ckpt_files]) except Exception as e: return error_str(e), None, None def convert(model_id, ckpt_name, token = "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"): model_id = url_to_model_id(model_id) # 1. Download the checkpoint file ckpt_path = hf_hub_download(repo_id=model_id, filename=ckpt_name) # 2. Run the conversion script subprocess.run( [ "python3", "./diffs/scripts/convert_original_stable_diffusion_to_diffusers.py", "--checkpoint_path", ckpt_path, "--dump_path" , model_id, ] ) # list files in current directory and return them as a list: import os return f"""files in current directory: {[f for f in os.listdir(".") if os.path.isfile(f)]}""" with gr.Blocks() as demo: with gr.Row(): with gr.Column(scale=11): with gr.Group(): gr.Markdown("## 1. Load model info") input_token = gr.Textbox( max_lines=1, label="Hugging Face token", placeholder="hf_...", ) gr.Markdown("Get your token [here](https://huggingface.co/settings/tokens).") input_model = gr.Textbox( max_lines=1, label="Model name or URL", placeholder="username/model_name", ) btn_get_ckpts = gr.Button("Load") with gr.Column(scale=10, visible=False) as col_convert: gr.Markdown("## 2. Convert to Diffusers🧨") radio_ckpts = gr.Radio(label="Choose a checkpoint to convert", visible=False) btn_convert = gr.Button("Convert") error_output = gr.Markdown(label="Output") btn_get_ckpts.click( fn=get_ckpt_names, inputs=[input_model], outputs=[error_output, radio_ckpts, col_convert], scroll_to_output=True ) btn_convert.click( fn=convert, inputs=[input_model, radio_ckpts, input_token], outputs=error_output, scroll_to_output=True ) demo.launch()