"""expose an endpoint that accepts image_url and prompt, runs inference with Qwen2.5-VL, and returns a text response""" from fastapi import FastAPI, Query from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info import torch app = FastAPI() checkpoint = "Qwen/Qwen2.5-VL-3B-Instruct" min_pixels = 256*28*28 max_pixels = 1280*28*28 processor = AutoProcessor.from_pretrained( checkpoint, min_pixels=min_pixels, max_pixels=max_pixels ) model = Qwen2_5_VLForConditionalGeneration.from_pretrained( checkpoint, torch_dtype=torch.bfloat16, device_map="auto", # attn_implementation="flash_attention_2", ) @app.get("/") def read_root(): return {"message": "API is live. Use the /predict endpoint."} @app.get("/predict") def predict(image_url: str = Query(...), prompt: str = Query(...)): messages = [ {"role": "system", "content": "You are a helpful assistant with vision abilities."}, {"role": "user", "content": [{"type": "image", "image": image_url}, {"type": "text", "text": prompt}]}, ] text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ).to(model.device) with torch.no_grad(): generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] output_texts = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return {"response": output_texts[0]}