'
+ img = ''
+
+ for i in [
+ f"characters/{character}.png",
+ f"characters/{character}.jpg",
+ f"characters/{character}.jpeg",
+ "img_bot.png",
+ "img_bot.jpg",
+ "img_bot.jpeg"
+ ]:
+
+ path = Path(i)
+ if path.exists():
+ img = f'
'
+ break
+
+ img_me = ''
+ for i in ["img_me.png", "img_me.jpg", "img_me.jpeg"]:
+ path = Path(i)
+ if path.exists():
+ img_me = f'
'
+ break
+
+ for i,_row in enumerate(history[::-1]):
+ row = _row.copy()
+ row[0] = re.sub(r"(\*\*)([^\*\n]*)(\*\*)", r"
\2", row[0])
+ row[1] = re.sub(r"(\*\*)([^\*\n]*)(\*\*)", r"
\2", row[1])
+ row[0] = re.sub(r"(\*)([^\*\n]*)(\*)", r"
\2", row[0])
+ row[1] = re.sub(r"(\*)([^\*\n]*)(\*)", r"
\2", row[1])
+ p = '\n'.join([f"
{x}
" for x in row[1].split('\n')])
+ output += f"""
+
+
+ {img}
+
+
+
+ {name2}
+
+
+ {p}
+
+
+
+ """
+
+ if not (i == len(history)-1 and len(row[0]) == 0):
+ p = '\n'.join([f"
{x}
" for x in row[0].split('\n')])
+ output += f"""
+
+
+ {img_me}
+
+
+
+ {name1}
+
+
+ {p}
+
+
+
+ """
+
+ output += "
"
+ return output
diff --git a/text-generation-webui/modules/models.py b/text-generation-webui/modules/models.py
new file mode 100644
index 0000000000000000000000000000000000000000..f4bb11fd3f7292657b008ab644b5be121d9980e5
--- /dev/null
+++ b/text-generation-webui/modules/models.py
@@ -0,0 +1,168 @@
+import json
+import os
+import time
+import zipfile
+from pathlib import Path
+
+import numpy as np
+import torch
+import transformers
+from transformers import AutoModelForCausalLM, AutoTokenizer
+
+import modules.shared as shared
+
+transformers.logging.set_verbosity_error()
+
+local_rank = None
+
+if shared.args.flexgen:
+ from flexgen.flex_opt import (CompressionConfig, ExecutionEnv, OptLM,
+ Policy, str2bool)
+
+if shared.args.deepspeed:
+ import deepspeed
+ from transformers.deepspeed import (HfDeepSpeedConfig,
+ is_deepspeed_zero3_enabled)
+
+ from modules.deepspeed_parameters import generate_ds_config
+
+ # Distributed setup
+ local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0"))
+ world_size = int(os.getenv("WORLD_SIZE", "1"))
+ torch.cuda.set_device(local_rank)
+ deepspeed.init_distributed()
+ ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
+ dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
+
+
+def load_model(model_name):
+ print(f"Loading {model_name}...")
+ t0 = time.time()
+
+ shared.is_RWKV = model_name.lower().startswith('rwkv-')
+
+ # Default settings
+ if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.gptq_bits, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV]):
+ if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
+ model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
+ else:
+ model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16).cuda()
+
+ # FlexGen
+ elif shared.args.flexgen:
+ # Initialize environment
+ env = ExecutionEnv.create(shared.args.disk_cache_dir)
+
+ # Offloading policy
+ policy = Policy(1, 1,
+ shared.args.percent[0], shared.args.percent[1],
+ shared.args.percent[2], shared.args.percent[3],
+ shared.args.percent[4], shared.args.percent[5],
+ overlap=True, sep_layer=True, pin_weight=shared.args.pin_weight,
+ cpu_cache_compute=False, attn_sparsity=1.0,
+ compress_weight=shared.args.compress_weight,
+ comp_weight_config=CompressionConfig(
+ num_bits=4, group_size=64,
+ group_dim=0, symmetric=False),
+ compress_cache=False,
+ comp_cache_config=CompressionConfig(
+ num_bits=4, group_size=64,
+ group_dim=2, symmetric=False))
+
+ model = OptLM(f"facebook/{shared.model_name}", env, "models", policy)
+
+ # DeepSpeed ZeRO-3
+ elif shared.args.deepspeed:
+ model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16)
+ model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
+ model.module.eval() # Inference
+ print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")
+
+ # RMKV model (not on HuggingFace)
+ elif shared.is_RWKV:
+ from modules.RWKV import RWKVModel, RWKVTokenizer
+
+ model = RWKVModel.from_pretrained(Path(f'models/{model_name}'), dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", device="cpu" if shared.args.cpu else "cuda")
+ tokenizer = RWKVTokenizer.from_pretrained(Path('models'))
+
+ return model, tokenizer
+
+ # Quantized model
+ elif shared.args.gptq_bits > 0:
+ from modules.GPTQ_loader import load_quantized
+
+ model = load_quantized(model_name)
+
+ # Custom
+ else:
+ command = "AutoModelForCausalLM.from_pretrained"
+ params = ["low_cpu_mem_usage=True"]
+ if not shared.args.cpu and not torch.cuda.is_available():
+ print("Warning: no GPU has been detected.\nFalling back to CPU mode.\n")
+ shared.args.cpu = True
+
+ if shared.args.cpu:
+ params.append("low_cpu_mem_usage=True")
+ params.append("torch_dtype=torch.float32")
+ else:
+ params.append("device_map='auto'")
+ params.append("load_in_8bit=True" if shared.args.load_in_8bit else "torch_dtype=torch.bfloat16" if shared.args.bf16 else "torch_dtype=torch.float16")
+
+ if shared.args.gpu_memory:
+ memory_map = shared.args.gpu_memory
+ max_memory = f"max_memory={{0: '{memory_map[0]}GiB'"
+ for i in range(1, len(memory_map)):
+ max_memory += (f", {i}: '{memory_map[i]}GiB'")
+ max_memory += (f", 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}")
+ params.append(max_memory)
+ elif not shared.args.load_in_8bit:
+ total_mem = (torch.cuda.get_device_properties(0).total_memory/(1024*1024))
+ suggestion = round((total_mem-1000)/1000)*1000
+ if total_mem-suggestion < 800:
+ suggestion -= 1000
+ suggestion = int(round(suggestion/1000))
+ print(f"\033[1;32;1mAuto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors.\nYou can manually set other values.\033[0;37;0m")
+ params.append(f"max_memory={{0: '{suggestion}GiB', 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}")
+ if shared.args.disk:
+ params.append(f"offload_folder='{shared.args.disk_cache_dir}'")
+
+ command = f"{command}(Path(f'models/{shared.model_name}'), {', '.join(set(params))})"
+ model = eval(command)
+
+ # Loading the tokenizer
+ if shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) and Path("models/gpt-j-6B/").exists():
+ tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
+ else:
+ tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{shared.model_name}/"))
+ tokenizer.truncation_side = 'left'
+
+ print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
+ return model, tokenizer
+
+def load_soft_prompt(name):
+ if name == 'None':
+ shared.soft_prompt = False
+ shared.soft_prompt_tensor = None
+ else:
+ with zipfile.ZipFile(Path(f'softprompts/{name}.zip')) as zf:
+ zf.extract('tensor.npy')
+ zf.extract('meta.json')
+ j = json.loads(open('meta.json', 'r').read())
+ print(f"\nLoading the softprompt \"{name}\".")
+ for field in j:
+ if field != 'name':
+ if type(j[field]) is list:
+ print(f"{field}: {', '.join(j[field])}")
+ else:
+ print(f"{field}: {j[field]}")
+ print()
+ tensor = np.load('tensor.npy')
+ Path('tensor.npy').unlink()
+ Path('meta.json').unlink()
+ tensor = torch.Tensor(tensor).to(device=shared.model.device, dtype=shared.model.dtype)
+ tensor = torch.reshape(tensor, (1, tensor.shape[0], tensor.shape[1]))
+
+ shared.soft_prompt = True
+ shared.soft_prompt_tensor = tensor
+
+ return name
diff --git a/text-generation-webui/modules/shared.py b/text-generation-webui/modules/shared.py
new file mode 100644
index 0000000000000000000000000000000000000000..ea2eb50b7f586e5c562bf2e7c75429c91f21ec6c
--- /dev/null
+++ b/text-generation-webui/modules/shared.py
@@ -0,0 +1,103 @@
+import argparse
+
+model = None
+tokenizer = None
+model_name = ""
+soft_prompt_tensor = None
+soft_prompt = False
+is_RWKV = False
+
+# Chat variables
+history = {'internal': [], 'visible': []}
+character = 'None'
+stop_everything = False
+processing_message = '*Is typing...*'
+
+# UI elements (buttons, sliders, HTML, etc)
+gradio = {}
+
+# Generation input parameters
+input_params = []
+
+settings = {
+ 'max_new_tokens': 200,
+ 'max_new_tokens_min': 1,
+ 'max_new_tokens_max': 2000,
+ 'name1': 'Person 1',
+ 'name2': 'Person 2',
+ 'context': 'This is a conversation between two people.',
+ 'stop_at_newline': True,
+ 'chat_prompt_size': 2048,
+ 'chat_prompt_size_min': 0,
+ 'chat_prompt_size_max': 2048,
+ 'chat_generation_attempts': 1,
+ 'chat_generation_attempts_min': 1,
+ 'chat_generation_attempts_max': 5,
+ 'name1_pygmalion': 'You',
+ 'name2_pygmalion': 'Kawaii',
+ 'context_pygmalion': "Kawaii's persona: Kawaii is a cheerful person who loves to make others smile. She is an optimist who loves to spread happiness and positivity wherever she goes.\n