antonovmaxim commited on
Commit
292c2df
·
1 Parent(s): 7a2a33b

fixed a bug (thanks to dorkai)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +23 -13
  2. api-example-stream.py +45 -68
  3. api-example.py +42 -57
  4. characters/Example.json +0 -7
  5. convert-to-flexgen.py +6 -3
  6. convert-to-safetensors.py +1 -1
  7. css/chat.css +43 -0
  8. css/chat.js +4 -0
  9. css/chat_style-TheEncrypted777.css +137 -0
  10. css/chat_style-cai-chat.css +91 -0
  11. css/chat_style-messenger.css +124 -0
  12. css/chat_style-wpp.css +86 -0
  13. css/html_4chan_style.css +103 -0
  14. css/html_instruct_style.css +83 -0
  15. css/html_readable_style.css +29 -0
  16. css/main.css +117 -0
  17. css/main.js +18 -0
  18. docker/.dockerignore +9 -0
  19. docker/.env.example +30 -0
  20. docker/Dockerfile +68 -0
  21. docker/docker-compose.yml +32 -0
  22. docs/Chat-mode.md +45 -0
  23. docs/DeepSpeed.md +24 -0
  24. docs/Docker.md +181 -0
  25. docs/Extensions.md +220 -0
  26. docs/FlexGen.md +64 -0
  27. docs/GPTQ-models-(4-bit-mode).md +144 -0
  28. docs/LLaMA-model.md +45 -0
  29. docs/Low-VRAM-guide.md +51 -0
  30. docs/README.md +19 -0
  31. docs/RWKV-model.md +54 -0
  32. docs/Spell-book.md +107 -0
  33. docs/System-requirements.md +42 -0
  34. docs/Training-LoRAs.md +167 -0
  35. docs/Using-LoRAs.md +55 -0
  36. docs/WSL-installation-guide.md +79 -0
  37. docs/Windows-installation-guide.md +9 -0
  38. docs/llama.cpp-models.md +43 -0
  39. download-model.py +188 -87
  40. extensions/api/blocking_api.py +87 -0
  41. extensions/api/requirements.txt +2 -0
  42. extensions/api/script.py +7 -0
  43. extensions/api/streaming_api.py +78 -0
  44. extensions/api/util.py +71 -0
  45. extensions/character_bias/script.py +49 -8
  46. extensions/elevenlabs_tts/requirements.txt +1 -3
  47. extensions/elevenlabs_tts/script.py +131 -64
  48. extensions/gallery/script.py +37 -23
  49. extensions/google_translate/script.py +5 -1
  50. extensions/llama_prompts/script.py +0 -18
.gitignore CHANGED
@@ -1,21 +1,31 @@
1
- cache/*
2
- characters/*
3
- extensions/silero_tts/outputs/*
4
- extensions/elevenlabs_tts/outputs/*
5
- logs/*
6
- models/*
7
- softprompts/*
8
- torch-dumps/*
 
 
 
 
 
9
  *pycache*
10
  */*pycache*
11
  */*/pycache*
 
 
 
 
 
 
12
 
13
  settings.json
14
  img_bot*
15
  img_me*
 
 
16
 
17
- !characters/Example.json
18
- !characters/Example.png
19
- !models/place-your-models-here.txt
20
- !softprompts/place-your-softprompts-here.txt
21
- !torch-dumps/place-your-pt-models-here.txt
 
1
+ cache
2
+ characters
3
+ training/datasets
4
+ extensions/silero_tts/outputs
5
+ extensions/elevenlabs_tts/outputs
6
+ extensions/sd_api_pictures/outputs
7
+ extensions/multimodal/pipelines
8
+ logs
9
+ loras
10
+ models
11
+ repositories
12
+ softprompts
13
+ torch-dumps
14
  *pycache*
15
  */*pycache*
16
  */*/pycache*
17
+ venv/
18
+ .venv/
19
+ .vscode
20
+ *.bak
21
+ *.ipynb
22
+ *.log
23
 
24
  settings.json
25
  img_bot*
26
  img_me*
27
+ prompts/[0-9]*
28
+ models/config-user.yaml
29
 
30
+ .DS_Store
31
+ Thumbs.db
 
 
 
api-example-stream.py CHANGED
@@ -1,90 +1,67 @@
1
- '''
2
-
3
- Contributed by SagsMug. Thank you SagsMug.
4
- https://github.com/oobabooga/text-generation-webui/pull/175
5
-
6
- '''
7
-
8
  import asyncio
9
  import json
10
- import random
11
- import string
 
 
 
 
12
 
13
- import websockets
 
 
14
 
 
 
15
 
16
- def random_hash():
17
- letters = string.ascii_lowercase + string.digits
18
- return ''.join(random.choice(letters) for i in range(9))
19
 
20
  async def run(context):
21
- server = "127.0.0.1"
22
- params = {
23
- 'max_new_tokens': 200,
 
24
  'do_sample': True,
25
- 'temperature': 0.5,
26
- 'top_p': 0.9,
27
  'typical_p': 1,
28
- 'repetition_penalty': 1.05,
29
- 'top_k': 0,
30
  'min_length': 0,
31
  'no_repeat_ngram_size': 0,
32
  'num_beams': 1,
33
  'penalty_alpha': 0,
34
  'length_penalty': 1,
35
  'early_stopping': False,
 
 
 
 
 
 
36
  }
37
- session = random_hash()
38
 
39
- async with websockets.connect(f"ws://{server}:7860/queue/join") as websocket:
40
- while content := json.loads(await websocket.recv()):
41
- #Python3.10 syntax, replace with if elif on older
42
- match content["msg"]:
43
- case "send_hash":
44
- await websocket.send(json.dumps({
45
- "session_hash": session,
46
- "fn_index": 7
47
- }))
48
- case "estimation":
49
- pass
50
- case "send_data":
51
- await websocket.send(json.dumps({
52
- "session_hash": session,
53
- "fn_index": 7,
54
- "data": [
55
- context,
56
- params['max_new_tokens'],
57
- params['do_sample'],
58
- params['temperature'],
59
- params['top_p'],
60
- params['typical_p'],
61
- params['repetition_penalty'],
62
- params['top_k'],
63
- params['min_length'],
64
- params['no_repeat_ngram_size'],
65
- params['num_beams'],
66
- params['penalty_alpha'],
67
- params['length_penalty'],
68
- params['early_stopping'],
69
- ]
70
- }))
71
- case "process_starts":
72
- pass
73
- case "process_generating" | "process_completed":
74
- yield content["output"]["data"][0]
75
- # You can search for your desired end indicator and
76
- # stop generation by closing the websocket here
77
- if (content["msg"] == "process_completed"):
78
- break
79
 
80
- prompt = "What I would like to say is the following: "
81
 
82
- async def get_result():
83
  async for response in run(prompt):
84
- # Print intermediate steps
85
- print(response)
86
 
87
- # Print final result
88
- print(response)
89
 
90
- asyncio.run(get_result())
 
 
 
 
 
 
 
 
 
 
1
  import asyncio
2
  import json
3
+ import sys
4
+
5
+ try:
6
+ import websockets
7
+ except ImportError:
8
+ print("Websockets package not found. Make sure it's installed.")
9
 
10
+ # For local streaming, the websockets are hosted without ssl - ws://
11
+ HOST = 'localhost:5005'
12
+ URI = f'ws://{HOST}/api/v1/stream'
13
 
14
+ # For reverse-proxied streaming, the remote will likely host with ssl - wss://
15
+ # URI = 'wss://your-uri-here.trycloudflare.com/api/v1/stream'
16
 
 
 
 
17
 
18
  async def run(context):
19
+ # Note: the selected defaults change from time to time.
20
+ request = {
21
+ 'prompt': context,
22
+ 'max_new_tokens': 250,
23
  'do_sample': True,
24
+ 'temperature': 1.3,
25
+ 'top_p': 0.1,
26
  'typical_p': 1,
27
+ 'repetition_penalty': 1.18,
28
+ 'top_k': 40,
29
  'min_length': 0,
30
  'no_repeat_ngram_size': 0,
31
  'num_beams': 1,
32
  'penalty_alpha': 0,
33
  'length_penalty': 1,
34
  'early_stopping': False,
35
+ 'seed': -1,
36
+ 'add_bos_token': True,
37
+ 'truncation_length': 2048,
38
+ 'ban_eos_token': False,
39
+ 'skip_special_tokens': True,
40
+ 'stopping_strings': []
41
  }
 
42
 
43
+ async with websockets.connect(URI, ping_interval=None) as websocket:
44
+ await websocket.send(json.dumps(request))
45
+
46
+ yield context # Remove this if you just want to see the reply
47
+
48
+ while True:
49
+ incoming_data = await websocket.recv()
50
+ incoming_data = json.loads(incoming_data)
51
+
52
+ match incoming_data['event']:
53
+ case 'text_stream':
54
+ yield incoming_data['text']
55
+ case 'stream_end':
56
+ return
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
 
58
 
59
+ async def print_response_stream(prompt):
60
  async for response in run(prompt):
61
+ print(response, end='')
62
+ sys.stdout.flush() # If we don't flush, we won't see tokens in realtime.
63
 
 
 
64
 
65
+ if __name__ == '__main__':
66
+ prompt = "In order to make homemade bread, follow these steps:\n1)"
67
+ asyncio.run(print_response_stream(prompt))
api-example.py CHANGED
@@ -1,59 +1,44 @@
1
- '''
2
-
3
- This is an example on how to use the API for oobabooga/text-generation-webui.
4
-
5
- Make sure to start the web UI with the following flags:
6
-
7
- python server.py --model MODEL --listen --no-stream
8
-
9
- Optionally, you can also add the --share flag to generate a public gradio URL,
10
- allowing you to use the API remotely.
11
-
12
- '''
13
  import requests
14
 
15
- # Server address
16
- server = "127.0.0.1"
17
-
18
- # Generation parameters
19
- # Reference: https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig
20
- params = {
21
- 'max_new_tokens': 200,
22
- 'do_sample': True,
23
- 'temperature': 0.5,
24
- 'top_p': 0.9,
25
- 'typical_p': 1,
26
- 'repetition_penalty': 1.05,
27
- 'top_k': 0,
28
- 'min_length': 0,
29
- 'no_repeat_ngram_size': 0,
30
- 'num_beams': 1,
31
- 'penalty_alpha': 0,
32
- 'length_penalty': 1,
33
- 'early_stopping': False,
34
- }
35
-
36
- # Input prompt
37
- prompt = "What I would like to say is the following: "
38
-
39
- response = requests.post(f"http://{server}:7860/run/textgen", json={
40
- "data": [
41
- prompt,
42
- params['max_new_tokens'],
43
- params['do_sample'],
44
- params['temperature'],
45
- params['top_p'],
46
- params['typical_p'],
47
- params['repetition_penalty'],
48
- params['top_k'],
49
- params['min_length'],
50
- params['no_repeat_ngram_size'],
51
- params['num_beams'],
52
- params['penalty_alpha'],
53
- params['length_penalty'],
54
- params['early_stopping'],
55
- ]
56
- }).json()
57
-
58
- reply = response["data"][0]
59
- print(reply)
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import requests
2
 
3
+ # For local streaming, the websockets are hosted without ssl - http://
4
+ HOST = 'localhost:5000'
5
+ URI = f'http://{HOST}/api/v1/generate'
6
+
7
+ # For reverse-proxied streaming, the remote will likely host with ssl - https://
8
+ # URI = 'https://your-uri-here.trycloudflare.com/api/v1/generate'
9
+
10
+
11
+ def run(prompt):
12
+ request = {
13
+ 'prompt': prompt,
14
+ 'max_new_tokens': 250,
15
+ 'do_sample': True,
16
+ 'temperature': 1.3,
17
+ 'top_p': 0.1,
18
+ 'typical_p': 1,
19
+ 'repetition_penalty': 1.18,
20
+ 'top_k': 40,
21
+ 'min_length': 0,
22
+ 'no_repeat_ngram_size': 0,
23
+ 'num_beams': 1,
24
+ 'penalty_alpha': 0,
25
+ 'length_penalty': 1,
26
+ 'early_stopping': False,
27
+ 'seed': -1,
28
+ 'add_bos_token': True,
29
+ 'truncation_length': 2048,
30
+ 'ban_eos_token': False,
31
+ 'skip_special_tokens': True,
32
+ 'stopping_strings': []
33
+ }
34
+
35
+ response = requests.post(URI, json=request)
36
+
37
+ if response.status_code == 200:
38
+ result = response.json()['results'][0]['text']
39
+ print(prompt + result)
40
+
41
+
42
+ if __name__ == '__main__':
43
+ prompt = "In order to make homemade bread, follow these steps:\n1)"
44
+ run(prompt)
 
 
 
characters/Example.json DELETED
@@ -1,7 +0,0 @@
1
- {
2
- "char_name": "Chiharu Yamada",
3
- "char_persona": "Chiharu Yamada is a young, computer engineer-nerd with a knack for problem solving and a passion for technology.",
4
- "char_greeting": "*Chiharu strides into the room with a smile, her eyes lighting up when she sees you. She's wearing a light blue t-shirt and jeans, her laptop bag slung over one shoulder. She takes a seat next to you, her enthusiasm palpable in the air*\nHey! I'm so excited to finally meet you. I've heard so many great things about you and I'm eager to pick your brain about computers. I'm sure you have a wealth of knowledge that I can learn from. *She grins, eyes twinkling with excitement* Let's get started!",
5
- "world_scenario": "",
6
- "example_dialogue": "{{user}}: So how did you get into computer engineering?\n{{char}}: I've always loved tinkering with technology since I was a kid.\n{{user}}: That's really impressive!\n{{char}}: *She chuckles bashfully* Thanks!\n{{user}}: So what do you do when you're not working on computers?\n{{char}}: I love exploring, going out with friends, watching movies, and playing video games.\n{{user}}: What's your favorite type of computer hardware to work with?\n{{char}}: Motherboards, they're like puzzles and the backbone of any system.\n{{user}}: That sounds great!\n{{char}}: Yeah, it's really fun. I'm lucky to be able to do this as a job."
7
- }
 
 
 
 
 
 
 
 
convert-to-flexgen.py CHANGED
@@ -13,10 +13,11 @@ import torch
13
  from tqdm import tqdm
14
  from transformers import AutoModelForCausalLM, AutoTokenizer
15
 
16
- parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog,max_help_position=54))
17
  parser.add_argument('MODEL', type=str, default=None, nargs='?', help="Path to the input model.")
18
  args = parser.parse_args()
19
 
 
20
  def disable_torch_init():
21
  """
22
  Disable the redundant torch default initialization to accelerate model creation.
@@ -31,20 +32,22 @@ def disable_torch_init():
31
  torch_layer_norm_init_backup = torch.nn.LayerNorm.reset_parameters
32
  setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
33
 
 
34
  def restore_torch_init():
35
  """Rollback the change made by disable_torch_init."""
36
  import torch
37
  setattr(torch.nn.Linear, "reset_parameters", torch_linear_init_backup)
38
  setattr(torch.nn.LayerNorm, "reset_parameters", torch_layer_norm_init_backup)
39
 
 
40
  if __name__ == '__main__':
41
  path = Path(args.MODEL)
42
  model_name = path.name
43
 
44
  print(f"Loading {model_name}...")
45
- #disable_torch_init()
46
  model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
47
- #restore_torch_init()
48
 
49
  tokenizer = AutoTokenizer.from_pretrained(path)
50
 
 
13
  from tqdm import tqdm
14
  from transformers import AutoModelForCausalLM, AutoTokenizer
15
 
16
+ parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=54))
17
  parser.add_argument('MODEL', type=str, default=None, nargs='?', help="Path to the input model.")
18
  args = parser.parse_args()
19
 
20
+
21
  def disable_torch_init():
22
  """
23
  Disable the redundant torch default initialization to accelerate model creation.
 
32
  torch_layer_norm_init_backup = torch.nn.LayerNorm.reset_parameters
33
  setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
34
 
35
+
36
  def restore_torch_init():
37
  """Rollback the change made by disable_torch_init."""
38
  import torch
39
  setattr(torch.nn.Linear, "reset_parameters", torch_linear_init_backup)
40
  setattr(torch.nn.LayerNorm, "reset_parameters", torch_layer_norm_init_backup)
41
 
42
+
43
  if __name__ == '__main__':
44
  path = Path(args.MODEL)
45
  model_name = path.name
46
 
47
  print(f"Loading {model_name}...")
48
+ # disable_torch_init()
49
  model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
50
+ # restore_torch_init()
51
 
52
  tokenizer = AutoTokenizer.from_pretrained(path)
53
 
convert-to-safetensors.py CHANGED
@@ -17,7 +17,7 @@ from pathlib import Path
17
  import torch
18
  from transformers import AutoModelForCausalLM, AutoTokenizer
19
 
20
- parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog,max_help_position=54))
21
  parser.add_argument('MODEL', type=str, default=None, nargs='?', help="Path to the input model.")
22
  parser.add_argument('--output', type=str, default=None, help='Path to the output folder (default: models/{model_name}_safetensors).')
23
  parser.add_argument("--max-shard-size", type=str, default="2GB", help="Maximum size of a shard in GB or MB (default: %(default)s).")
 
17
  import torch
18
  from transformers import AutoModelForCausalLM, AutoTokenizer
19
 
20
+ parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=54))
21
  parser.add_argument('MODEL', type=str, default=None, nargs='?', help="Path to the input model.")
22
  parser.add_argument('--output', type=str, default=None, help='Path to the output folder (default: models/{model_name}_safetensors).')
23
  parser.add_argument("--max-shard-size", type=str, default="2GB", help="Maximum size of a shard in GB or MB (default: %(default)s).")
css/chat.css ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .h-\[40vh\], .wrap.svelte-byatnx.svelte-byatnx.svelte-byatnx {
2
+ height: 66.67vh
3
+ }
4
+
5
+ .gradio-container {
6
+ margin-left: auto !important;
7
+ margin-right: auto !important;
8
+ }
9
+
10
+ .w-screen {
11
+ width: unset
12
+ }
13
+
14
+ div.svelte-362y77>*, div.svelte-362y77>.form>* {
15
+ flex-wrap: nowrap
16
+ }
17
+
18
+ /* fixes the API documentation in chat mode */
19
+ .api-docs.svelte-1iguv9h.svelte-1iguv9h.svelte-1iguv9h {
20
+ display: grid;
21
+ }
22
+
23
+ .pending.svelte-1ed2p3z {
24
+ opacity: 1;
25
+ }
26
+
27
+ #extensions {
28
+ padding: 0;
29
+ padding: 0;
30
+ }
31
+
32
+ #gradio-chatbot {
33
+ height: 66.67vh;
34
+ }
35
+
36
+ .wrap.svelte-6roggh.svelte-6roggh {
37
+ max-height: 92.5%;
38
+ }
39
+
40
+ /* This is for the microphone button in the whisper extension */
41
+ .sm.svelte-1ipelgc {
42
+ width: 100%;
43
+ }
css/chat.js ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ document.getElementById("main").childNodes[0].style = "max-width: 800px; margin-left: auto; margin-right: auto";
2
+ document.getElementById("extensions").style.setProperty("max-width", "800px");
3
+ document.getElementById("extensions").style.setProperty("margin-left", "auto");
4
+ document.getElementById("extensions").style.setProperty("margin-right", "auto");
css/chat_style-TheEncrypted777.css ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /* All credits to TheEncrypted777: https://www.reddit.com/r/Oobabooga/comments/12xe6vq/updated_css_styling_with_color_customization_for/ */
2
+
3
+ .chat {
4
+ margin-left: auto;
5
+ margin-right: auto;
6
+ max-width: 800px;
7
+ height: calc(100vh - 300px);
8
+ overflow-y: auto;
9
+ padding-right: 20px;
10
+ display: flex;
11
+ flex-direction: column-reverse;
12
+ word-break: break-word;
13
+ overflow-wrap: anywhere;
14
+ }
15
+
16
+ .message {
17
+ display: grid;
18
+ grid-template-columns: 60px minmax(0, 1fr);
19
+ padding-bottom: 28px;
20
+ font-size: 18px;
21
+ /*Change 'Quicksand' to a font you like or leave it*/
22
+ font-family: Quicksand, Arial, sans-serif;
23
+ line-height: 1.428571429;
24
+ }
25
+
26
+ .circle-you {
27
+ background-color: gray;
28
+ border-radius: 1rem;
29
+ /*Change color to any you like to be the border of your image*/
30
+ border: 2px solid white;
31
+ }
32
+
33
+ .circle-bot {
34
+ background-color: gray;
35
+ border-radius: 1rem;
36
+ /*Change color to any you like to be the border of the bot's image*/
37
+ border: 2px solid white;
38
+ }
39
+
40
+ .circle-bot img,
41
+ .circle-you img {
42
+ border-radius: 10%;
43
+ width: 100%;
44
+ height: 100%;
45
+ object-fit: cover;
46
+ }
47
+
48
+ .circle-you, .circle-bot {
49
+ /*You can set the size of the profile images here, but if you do, you have to also adjust the .text{padding-left: 90px} to a different number according to the width of the image which is right below here*/
50
+ width: 135px;
51
+ height: 175px;
52
+ }
53
+
54
+ .text {
55
+ /*Change this to move the message box further left or right depending on the size of your profile pic*/
56
+ padding-left: 90px;
57
+ text-shadow: 2px 2px 2px rgb(0, 0, 0);
58
+ }
59
+
60
+ .text p {
61
+ margin-top: 2px;
62
+ }
63
+
64
+ .username {
65
+ padding-left: 10px;
66
+ font-size: 22px;
67
+ font-weight: bold;
68
+ border-top: 1px solid rgb(51, 64, 90);
69
+ padding: 3px;
70
+ }
71
+
72
+ .message-body {
73
+ position: relative;
74
+ border-radius: 1rem;
75
+ border: 1px solid rgba(255, 255, 255, 0.459);
76
+ border-radius: 10px;
77
+ padding: 10px;
78
+ padding-top: 5px;
79
+ /*Message gradient background color - remove the line bellow if you don't want a background color or gradient*/
80
+ background: linear-gradient(to bottom, #171730, #1b263f);
81
+ }
82
+
83
+ /*Adds 2 extra lines at the top and bottom of the message*/
84
+ .message-body:before,
85
+ .message-body:after {
86
+ content: "";
87
+ position: absolute;
88
+ left: 10px;
89
+ right: 10px;
90
+ height: 1px;
91
+ background-color: rgba(255, 255, 255, 0.13);
92
+ }
93
+
94
+ .message-body:before {
95
+ top: 6px;
96
+ }
97
+
98
+ .message-body:after {
99
+ bottom: 6px;
100
+ }
101
+
102
+
103
+ .message-body img {
104
+ max-width: 300px;
105
+ max-height: 300px;
106
+ border-radius: 20px;
107
+ }
108
+
109
+ .message-body p {
110
+ margin-bottom: 0 !important;
111
+ font-size: 18px !important;
112
+ line-height: 1.428571429 !important;
113
+ }
114
+
115
+ .message-body li {
116
+ margin-top: 0.5em !important;
117
+ margin-bottom: 0.5em !important;
118
+ }
119
+
120
+ .message-body li > p {
121
+ display: inline !important;
122
+ }
123
+
124
+ .message-body code {
125
+ overflow-x: auto;
126
+ }
127
+ .message-body :not(pre) > code {
128
+ white-space: normal !important;
129
+ }
130
+
131
+ .dark .message-body p em {
132
+ color: rgb(138, 138, 138) !important;
133
+ }
134
+
135
+ .message-body p em {
136
+ color: rgb(110, 110, 110) !important;
137
+ }
css/chat_style-cai-chat.css ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .chat {
2
+ margin-left: auto;
3
+ margin-right: auto;
4
+ max-width: 800px;
5
+ height: calc(100vh - 306px);
6
+ overflow-y: auto;
7
+ padding-right: 20px;
8
+ display: flex;
9
+ flex-direction: column-reverse;
10
+ word-break: break-word;
11
+ overflow-wrap: anywhere;
12
+ }
13
+
14
+ .message {
15
+ display: grid;
16
+ grid-template-columns: 60px minmax(0, 1fr);
17
+ padding-bottom: 25px;
18
+ font-size: 15px;
19
+ font-family: Helvetica, Arial, sans-serif;
20
+ line-height: 1.428571429;
21
+ }
22
+
23
+ .circle-you {
24
+ width: 50px;
25
+ height: 50px;
26
+ background-color: rgb(238, 78, 59);
27
+ border-radius: 50%;
28
+ }
29
+
30
+ .circle-bot {
31
+ width: 50px;
32
+ height: 50px;
33
+ background-color: rgb(59, 78, 244);
34
+ border-radius: 50%;
35
+ }
36
+
37
+ .circle-bot img,
38
+ .circle-you img {
39
+ border-radius: 50%;
40
+ width: 100%;
41
+ height: 100%;
42
+ object-fit: cover;
43
+ }
44
+
45
+ .text {}
46
+
47
+ .text p {
48
+ margin-top: 5px;
49
+ }
50
+
51
+ .username {
52
+ font-weight: bold;
53
+ }
54
+
55
+ .message-body {}
56
+
57
+ .message-body img {
58
+ max-width: 300px;
59
+ max-height: 300px;
60
+ border-radius: 20px;
61
+ }
62
+
63
+ .message-body p {
64
+ margin-bottom: 0 !important;
65
+ font-size: 15px !important;
66
+ line-height: 1.428571429 !important;
67
+ }
68
+
69
+ .message-body li {
70
+ margin-top: 0.5em !important;
71
+ margin-bottom: 0.5em !important;
72
+ }
73
+
74
+ .message-body li > p {
75
+ display: inline !important;
76
+ }
77
+
78
+ .message-body code {
79
+ overflow-x: auto;
80
+ }
81
+ .message-body :not(pre) > code {
82
+ white-space: normal !important;
83
+ }
84
+
85
+ .dark .message-body p em {
86
+ color: rgb(138, 138, 138) !important;
87
+ }
88
+
89
+ .message-body p em {
90
+ color: rgb(110, 110, 110) !important;
91
+ }
css/chat_style-messenger.css ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .chat {
2
+ margin-left: auto;
3
+ margin-right: auto;
4
+ max-width: 800px;
5
+ height: calc(100vh - 306px);
6
+ overflow-y: auto;
7
+ padding-right: 20px;
8
+ display: flex;
9
+ flex-direction: column-reverse;
10
+ word-break: break-word;
11
+ overflow-wrap: anywhere;
12
+ }
13
+
14
+ .message {
15
+ padding-bottom: 25px;
16
+ font-size: 15px;
17
+ font-family: Helvetica, Arial, sans-serif;
18
+ line-height: 1.428571429;
19
+ }
20
+
21
+ .circle-you {
22
+ width: 50px;
23
+ height: 50px;
24
+ background-color: rgb(238, 78, 59);
25
+ border-radius: 50%;
26
+ }
27
+
28
+ .circle-bot {
29
+ width: 50px;
30
+ height: 50px;
31
+ background-color: rgb(59, 78, 244);
32
+ border-radius: 50%;
33
+ float: left;
34
+ margin-right: 10px;
35
+ margin-top: 5px;
36
+ }
37
+
38
+ .circle-bot img,
39
+ .circle-you img {
40
+ border-radius: 50%;
41
+ width: 100%;
42
+ height: 100%;
43
+ object-fit: cover;
44
+ }
45
+ .circle-you {
46
+ margin-top: 5px;
47
+ float: right;
48
+ }
49
+ .circle-bot + .text, .circle-you + .text {
50
+ border-radius: 18px;
51
+ padding: 8px 12px;
52
+ }
53
+
54
+ .circle-bot + .text {
55
+ background-color: #E4E6EB;
56
+ float: left;
57
+ }
58
+
59
+ .circle-you + .text {
60
+ float: right;
61
+ background-color: rgb(0, 132, 255);
62
+ margin-right: 10px;
63
+ }
64
+
65
+ .circle-you + .text div, .circle-you + .text *, .dark .circle-you + .text div, .dark .circle-you + .text * {
66
+ color: #FFF !important;
67
+ }
68
+ .circle-you + .text .username {
69
+ text-align: right;
70
+ }
71
+
72
+ .dark .circle-bot + .text div, .dark .circle-bot + .text * {
73
+ color: #000;
74
+ }
75
+
76
+ .text {
77
+ max-width: 80%;
78
+ }
79
+
80
+ .text p {
81
+ margin-top: 5px;
82
+ }
83
+
84
+ .username {
85
+ font-weight: bold;
86
+ }
87
+
88
+ .message-body {}
89
+
90
+ .message-body img {
91
+ max-width: 300px;
92
+ max-height: 300px;
93
+ border-radius: 20px;
94
+ }
95
+
96
+ .message-body p {
97
+ margin-bottom: 0 !important;
98
+ font-size: 15px !important;
99
+ line-height: 1.428571429 !important;
100
+ }
101
+
102
+ .message-body li {
103
+ margin-top: 0.5em !important;
104
+ margin-bottom: 0.5em !important;
105
+ }
106
+
107
+ .message-body li > p {
108
+ display: inline !important;
109
+ }
110
+
111
+ .message-body code {
112
+ overflow-x: auto;
113
+ }
114
+ .message-body :not(pre) > code {
115
+ white-space: normal !important;
116
+ }
117
+
118
+ .dark .message-body p em {
119
+ color: rgb(138, 138, 138) !important;
120
+ }
121
+
122
+ .message-body p em {
123
+ color: rgb(110, 110, 110) !important;
124
+ }
css/chat_style-wpp.css ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .chat {
2
+ margin-left: auto;
3
+ margin-right: auto;
4
+ max-width: 800px;
5
+ height: calc(100vh - 306px);
6
+ overflow-y: auto;
7
+ padding-right: 20px;
8
+ display: flex;
9
+ flex-direction: column-reverse;
10
+ word-break: break-word;
11
+ overflow-wrap: anywhere;
12
+ }
13
+
14
+ .message {
15
+ padding-bottom: 25px;
16
+ font-size: 15px;
17
+ font-family: Helvetica, Arial, sans-serif;
18
+ line-height: 1.428571429;
19
+ }
20
+
21
+ .text-you {
22
+ background-color: #d9fdd3;
23
+ border-radius: 15px;
24
+ padding: 10px;
25
+ padding-top: 5px;
26
+ float: right;
27
+ }
28
+
29
+ .text-bot {
30
+ background-color: #f2f2f2;
31
+ border-radius: 15px;
32
+ padding: 10px;
33
+ padding-top: 5px;
34
+ }
35
+
36
+ .dark .text-you {
37
+ background-color: #005c4b;
38
+ color: #111b21;
39
+ }
40
+
41
+ .dark .text-bot {
42
+ background-color: #1f2937;
43
+ color: #111b21;
44
+ }
45
+
46
+ .text-bot p, .text-you p {
47
+ margin-top: 5px;
48
+ }
49
+
50
+ .message-body {}
51
+
52
+ .message-body img {
53
+ max-width: 300px;
54
+ max-height: 300px;
55
+ border-radius: 20px;
56
+ }
57
+
58
+ .message-body p {
59
+ margin-bottom: 0 !important;
60
+ font-size: 15px !important;
61
+ line-height: 1.428571429 !important;
62
+ }
63
+
64
+ .message-body li {
65
+ margin-top: 0.5em !important;
66
+ margin-bottom: 0.5em !important;
67
+ }
68
+
69
+ .message-body li > p {
70
+ display: inline !important;
71
+ }
72
+
73
+ .message-body code {
74
+ overflow-x: auto;
75
+ }
76
+ .message-body :not(pre) > code {
77
+ white-space: normal !important;
78
+ }
79
+
80
+ .dark .message-body p em {
81
+ color: rgb(138, 138, 138) !important;
82
+ }
83
+
84
+ .message-body p em {
85
+ color: rgb(110, 110, 110) !important;
86
+ }
css/html_4chan_style.css ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #parent #container {
2
+ background-color: #eef2ff;
3
+ padding: 17px;
4
+ }
5
+ #parent #container .reply {
6
+ background-color: rgb(214, 218, 240);
7
+ border-bottom-color: rgb(183, 197, 217);
8
+ border-bottom-style: solid;
9
+ border-bottom-width: 1px;
10
+ border-image-outset: 0;
11
+ border-image-repeat: stretch;
12
+ border-image-slice: 100%;
13
+ border-image-source: none;
14
+ border-image-width: 1;
15
+ border-left-color: rgb(0, 0, 0);
16
+ border-left-style: none;
17
+ border-left-width: 0px;
18
+ border-right-color: rgb(183, 197, 217);
19
+ border-right-style: solid;
20
+ border-right-width: 1px;
21
+ border-top-color: rgb(0, 0, 0);
22
+ border-top-style: none;
23
+ border-top-width: 0px;
24
+ color: rgb(0, 0, 0);
25
+ display: table;
26
+ font-family: arial, helvetica, sans-serif;
27
+ font-size: 13.3333px;
28
+ margin-bottom: 4px;
29
+ margin-left: 0px;
30
+ margin-right: 0px;
31
+ margin-top: 4px;
32
+ overflow-x: hidden;
33
+ overflow-y: hidden;
34
+ padding-bottom: 4px;
35
+ padding-left: 2px;
36
+ padding-right: 2px;
37
+ padding-top: 4px;
38
+ }
39
+
40
+ #parent #container .number {
41
+ color: rgb(0, 0, 0);
42
+ font-family: arial, helvetica, sans-serif;
43
+ font-size: 13.3333px;
44
+ width: 342.65px;
45
+ margin-right: 7px;
46
+ }
47
+
48
+ #parent #container .op {
49
+ color: rgb(0, 0, 0);
50
+ font-family: arial, helvetica, sans-serif;
51
+ font-size: 13.3333px;
52
+ margin-bottom: 8px;
53
+ margin-left: 0px;
54
+ margin-right: 0px;
55
+ margin-top: 4px;
56
+ overflow-x: hidden;
57
+ overflow-y: hidden;
58
+ }
59
+
60
+ #parent #container .op blockquote {
61
+ margin-left: 0px !important;
62
+ }
63
+
64
+ #parent #container .name {
65
+ color: rgb(17, 119, 67);
66
+ font-family: arial, helvetica, sans-serif;
67
+ font-size: 13.3333px;
68
+ font-weight: 700;
69
+ margin-left: 7px;
70
+ }
71
+
72
+ #parent #container .quote {
73
+ color: rgb(221, 0, 0);
74
+ font-family: arial, helvetica, sans-serif;
75
+ font-size: 13.3333px;
76
+ text-decoration-color: rgb(221, 0, 0);
77
+ text-decoration-line: underline;
78
+ text-decoration-style: solid;
79
+ text-decoration-thickness: auto;
80
+ }
81
+
82
+ #parent #container .greentext {
83
+ color: rgb(120, 153, 34);
84
+ font-family: arial, helvetica, sans-serif;
85
+ font-size: 13.3333px;
86
+ }
87
+
88
+ #parent #container blockquote {
89
+ margin: 0px !important;
90
+ margin-block-start: 1em;
91
+ margin-block-end: 1em;
92
+ margin-inline-start: 40px;
93
+ margin-inline-end: 40px;
94
+ margin-top: 13.33px !important;
95
+ margin-bottom: 13.33px !important;
96
+ margin-left: 40px !important;
97
+ margin-right: 40px !important;
98
+ }
99
+
100
+ #parent #container .message {
101
+ color: black;
102
+ border: none;
103
+ }
css/html_instruct_style.css ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .chat {
2
+ margin-left: auto;
3
+ margin-right: auto;
4
+ max-width: 800px;
5
+ height: calc(100vh - 306px);
6
+ overflow-y: auto;
7
+ padding-right: 20px;
8
+ display: flex;
9
+ flex-direction: column-reverse;
10
+ word-break: break-word;
11
+ overflow-wrap: anywhere;
12
+ }
13
+
14
+ .message {
15
+ display: grid;
16
+ grid-template-columns: 60px 1fr;
17
+ padding-bottom: 25px;
18
+ font-size: 15px;
19
+ font-family: Helvetica, Arial, sans-serif;
20
+ line-height: 1.428571429;
21
+ }
22
+
23
+ .username {
24
+ display: none;
25
+ }
26
+
27
+ .message-body {}
28
+
29
+ .message-body p {
30
+ font-size: 15px !important;
31
+ line-height: 1.75 !important;
32
+ margin-bottom: 1.25em !important;
33
+ }
34
+
35
+ .message-body li {
36
+ margin-top: 0.5em !important;
37
+ margin-bottom: 0.5em !important;
38
+ }
39
+
40
+ .message-body li > p {
41
+ display: inline !important;
42
+ }
43
+
44
+ .message-body code {
45
+ overflow-x: auto;
46
+ }
47
+ .message-body :not(pre) > code {
48
+ white-space: normal !important;
49
+ }
50
+
51
+ .dark .message-body p em {
52
+ color: rgb(198, 202, 214) !important;
53
+ }
54
+
55
+ .message-body p em {
56
+ color: rgb(110, 110, 110) !important;
57
+ }
58
+
59
+ .gradio-container .chat .assistant-message {
60
+ padding: 15px;
61
+ border-radius: 20px;
62
+ background-color: #0000000f;
63
+ margin-top: 9px !important;
64
+ margin-bottom: 18px !important;
65
+ }
66
+
67
+ .gradio-container .chat .user-message {
68
+ padding: 15px;
69
+ border-radius: 20px;
70
+ margin-bottom: 9px !important;
71
+ }
72
+
73
+ .dark .chat .assistant-message {
74
+ background-color: #374151;
75
+ }
76
+
77
+ code {
78
+ background-color: white !important;
79
+ }
80
+
81
+ .dark code {
82
+ background-color: #1a212f !important;
83
+ }
css/html_readable_style.css ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .container {
2
+ max-width: 600px;
3
+ margin-left: auto;
4
+ margin-right: auto;
5
+ background-color: rgb(31, 41, 55);
6
+ padding:3em;
7
+ word-break: break-word;
8
+ overflow-wrap: anywhere;
9
+ color: #efefef !important;
10
+ }
11
+
12
+ .container p, .container li {
13
+ font-size: 16px !important;
14
+ color: #efefef !important;
15
+ margin-bottom: 22px;
16
+ line-height: 1.4 !important;
17
+ }
18
+
19
+ .container li > p {
20
+ display: inline !important;
21
+ }
22
+
23
+ .container code {
24
+ overflow-x: auto;
25
+ }
26
+
27
+ .container :not(pre) > code {
28
+ white-space: normal !important;
29
+ }
css/main.css ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .tabs.svelte-710i53 {
2
+ margin-top: 0
3
+ }
4
+
5
+ .py-6 {
6
+ padding-top: 2.5rem
7
+ }
8
+
9
+ .dark #refresh-button {
10
+ background-color: #ffffff1f;
11
+ }
12
+
13
+ #refresh-button {
14
+ flex: none;
15
+ margin: 0;
16
+ padding: 0;
17
+ min-width: 50px;
18
+ border: none;
19
+ box-shadow: none;
20
+ border-radius: 10px;
21
+ background-color: #0000000d;
22
+ }
23
+
24
+ #download-label, #upload-label {
25
+ min-height: 0
26
+ }
27
+
28
+ #accordion {
29
+ }
30
+
31
+ .dark svg {
32
+ fill: white;
33
+ }
34
+
35
+ .dark a {
36
+ color: white !important;
37
+ text-decoration: none !important;
38
+ }
39
+
40
+ ol li p, ul li p {
41
+ display: inline-block;
42
+ }
43
+
44
+ #main, #parameters, #chat-settings, #interface-mode, #lora, #training-tab, #model-tab {
45
+ border: 0;
46
+ }
47
+
48
+ .gradio-container-3-18-0 .prose * h1, h2, h3, h4 {
49
+ color: white;
50
+ }
51
+
52
+ .gradio-container {
53
+ max-width: 100% !important;
54
+ padding-top: 0 !important;
55
+ }
56
+
57
+ #extensions {
58
+ padding: 15px;
59
+ margin-bottom: 35px;
60
+ }
61
+
62
+ .extension-tab {
63
+ border: 0 !important;
64
+ }
65
+
66
+ span.math.inline {
67
+ font-size: 27px;
68
+ vertical-align: baseline !important;
69
+ }
70
+
71
+ div.svelte-15lo0d8 > *, div.svelte-15lo0d8 > .form > * {
72
+ flex-wrap: nowrap;
73
+ }
74
+
75
+ .header_bar {
76
+ background-color: #f7f7f7;
77
+ margin-bottom: 40px;
78
+ }
79
+
80
+ .dark .header_bar {
81
+ border: none !important;
82
+ background-color: #8080802b;
83
+ }
84
+
85
+ .textbox_default textarea {
86
+ height: calc(100vh - 391px);
87
+ }
88
+
89
+ .textbox_default_output textarea {
90
+ height: calc(100vh - 210px);
91
+ }
92
+
93
+ .textbox textarea {
94
+ height: calc(100vh - 261px);
95
+ }
96
+
97
+ .textbox_default textarea, .textbox_default_output textarea, .textbox textarea {
98
+ font-size: 16px !important;
99
+ color: #46464A !important;
100
+ }
101
+
102
+ .dark textarea {
103
+ color: #efefef !important;
104
+ }
105
+
106
+ /* Hide the gradio footer*/
107
+ footer {
108
+ display: none !important;
109
+ }
110
+
111
+ button {
112
+ font-size: 14px !important;
113
+ }
114
+
115
+ .small-button {
116
+ max-width: 171px;
117
+ }
css/main.js ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ document.getElementById("main").parentNode.childNodes[0].classList.add("header_bar");
2
+ document.getElementById("main").parentNode.style = "padding: 0; margin: 0";
3
+ document.getElementById("main").parentNode.parentNode.parentNode.style = "padding: 0";
4
+
5
+ // Get references to the elements
6
+ let main = document.getElementById('main');
7
+ let main_parent = main.parentNode;
8
+ let extensions = document.getElementById('extensions');
9
+
10
+ // Add an event listener to the main element
11
+ main_parent.addEventListener('click', function(e) {
12
+ // Check if the main element is visible
13
+ if (main.offsetHeight > 0 && main.offsetWidth > 0) {
14
+ extensions.style.display = 'flex';
15
+ } else {
16
+ extensions.style.display = 'none';
17
+ }
18
+ });
docker/.dockerignore ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ .env
2
+ Dockerfile
3
+ /characters
4
+ /loras
5
+ /models
6
+ /presets
7
+ /prompts
8
+ /softprompts
9
+ /training
docker/.env.example ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # by default the Dockerfile specifies these versions: 3.5;5.0;6.0;6.1;7.0;7.5;8.0;8.6+PTX
2
+ # however for me to work i had to specify the exact version for my card ( 2060 ) it was 7.5
3
+ # https://developer.nvidia.com/cuda-gpus you can find the version for your card here
4
+ TORCH_CUDA_ARCH_LIST=7.5
5
+
6
+ # these commands worked for me with roughly 4.5GB of vram
7
+ CLI_ARGS=--model llama-7b-4bit --wbits 4 --listen --auto-devices
8
+
9
+ # the following examples have been tested with the files linked in docs/README_docker.md:
10
+ # example running 13b with 4bit/128 groupsize : CLI_ARGS=--model llama-13b-4bit-128g --wbits 4 --listen --groupsize 128 --pre_layer 25
11
+ # example with loading api extension and public share: CLI_ARGS=--model llama-7b-4bit --wbits 4 --listen --auto-devices --no-stream --extensions api --share
12
+ # example running 7b with 8bit groupsize : CLI_ARGS=--model llama-7b --load-in-8bit --listen --auto-devices
13
+
14
+ # the port the webui binds to on the host
15
+ HOST_PORT=7860
16
+ # the port the webui binds to inside the container
17
+ CONTAINER_PORT=7860
18
+
19
+ # the port the api binds to on the host
20
+ HOST_API_PORT=5000
21
+ # the port the api binds to inside the container
22
+ CONTAINER_API_PORT=5000
23
+
24
+ # the port the api stream endpoint binds to on the host
25
+ HOST_API_STREAM_PORT=5005
26
+ # the port the api stream endpoint binds to inside the container
27
+ CONTAINER_API_STREAM_PORT=5005
28
+
29
+ # the version used to install text-generation-webui from
30
+ WEBUI_VERSION=HEAD
docker/Dockerfile ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM nvidia/cuda:11.8.0-devel-ubuntu22.04 as builder
2
+
3
+ RUN apt-get update && \
4
+ apt-get install --no-install-recommends -y git vim build-essential python3-dev python3-venv && \
5
+ rm -rf /var/lib/apt/lists/*
6
+
7
+ RUN git clone https://github.com/oobabooga/GPTQ-for-LLaMa /build
8
+
9
+ WORKDIR /build
10
+
11
+ RUN python3 -m venv /build/venv
12
+ RUN . /build/venv/bin/activate && \
13
+ pip3 install --upgrade pip setuptools && \
14
+ pip3 install torch torchvision torchaudio && \
15
+ pip3 install -r requirements.txt
16
+
17
+ # https://developer.nvidia.com/cuda-gpus
18
+ # for a rtx 2060: ARG TORCH_CUDA_ARCH_LIST="7.5"
19
+ ARG TORCH_CUDA_ARCH_LIST="3.5;5.0;6.0;6.1;7.0;7.5;8.0;8.6+PTX"
20
+ RUN . /build/venv/bin/activate && \
21
+ python3 setup_cuda.py bdist_wheel -d .
22
+
23
+ FROM nvidia/cuda:11.8.0-runtime-ubuntu22.04
24
+
25
+ LABEL maintainer="Your Name <[email protected]>"
26
+ LABEL description="Docker image for GPTQ-for-LLaMa and Text Generation WebUI"
27
+
28
+ RUN apt-get update && \
29
+ apt-get install --no-install-recommends -y libportaudio2 libasound-dev git python3 python3-pip make g++ && \
30
+ rm -rf /var/lib/apt/lists/*
31
+
32
+ RUN --mount=type=cache,target=/root/.cache/pip pip3 install virtualenv
33
+ RUN mkdir /app
34
+
35
+ WORKDIR /app
36
+
37
+ ARG WEBUI_VERSION
38
+ RUN test -n "${WEBUI_VERSION}" && git reset --hard ${WEBUI_VERSION} || echo "Using provided webui source"
39
+
40
+ RUN virtualenv /app/venv
41
+ RUN . /app/venv/bin/activate && \
42
+ pip3 install --upgrade pip setuptools && \
43
+ pip3 install torch torchvision torchaudio
44
+
45
+ COPY --from=builder /build /app/repositories/GPTQ-for-LLaMa
46
+ RUN . /app/venv/bin/activate && \
47
+ pip3 install /app/repositories/GPTQ-for-LLaMa/*.whl
48
+
49
+ COPY extensions/api/requirements.txt /app/extensions/api/requirements.txt
50
+ COPY extensions/elevenlabs_tts/requirements.txt /app/extensions/elevenlabs_tts/requirements.txt
51
+ COPY extensions/google_translate/requirements.txt /app/extensions/google_translate/requirements.txt
52
+ COPY extensions/silero_tts/requirements.txt /app/extensions/silero_tts/requirements.txt
53
+ COPY extensions/whisper_stt/requirements.txt /app/extensions/whisper_stt/requirements.txt
54
+ RUN --mount=type=cache,target=/root/.cache/pip . /app/venv/bin/activate && cd extensions/api && pip3 install -r requirements.txt
55
+ RUN --mount=type=cache,target=/root/.cache/pip . /app/venv/bin/activate && cd extensions/elevenlabs_tts && pip3 install -r requirements.txt
56
+ RUN --mount=type=cache,target=/root/.cache/pip . /app/venv/bin/activate && cd extensions/google_translate && pip3 install -r requirements.txt
57
+ RUN --mount=type=cache,target=/root/.cache/pip . /app/venv/bin/activate && cd extensions/silero_tts && pip3 install -r requirements.txt
58
+ RUN --mount=type=cache,target=/root/.cache/pip . /app/venv/bin/activate && cd extensions/whisper_stt && pip3 install -r requirements.txt
59
+
60
+ COPY requirements.txt /app/requirements.txt
61
+ RUN . /app/venv/bin/activate && \
62
+ pip3 install -r requirements.txt
63
+
64
+ RUN cp /app/venv/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda118.so /app/venv/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cpu.so
65
+
66
+ COPY . /app/
67
+ ENV CLI_ARGS=""
68
+ CMD . /app/venv/bin/activate && python3 server.py ${CLI_ARGS}
docker/docker-compose.yml ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ version: "3.3"
2
+ services:
3
+ text-generation-webui:
4
+ build:
5
+ context: .
6
+ args:
7
+ # specify which cuda version your card supports: https://developer.nvidia.com/cuda-gpus
8
+ TORCH_CUDA_ARCH_LIST: ${TORCH_CUDA_ARCH_LIST}
9
+ WEBUI_VERSION: ${WEBUI_VERSION}
10
+ env_file: .env
11
+ ports:
12
+ - "${HOST_PORT}:${CONTAINER_PORT}"
13
+ - "${HOST_API_PORT}:${CONTAINER_API_PORT}"
14
+ - "${HOST_API_STREAM_PORT}:${CONTAINER_API_STREAM_PORT}"
15
+ stdin_open: true
16
+ tty: true
17
+ volumes:
18
+ - ./characters:/app/characters
19
+ - ./extensions:/app/extensions
20
+ - ./loras:/app/loras
21
+ - ./models:/app/models
22
+ - ./presets:/app/presets
23
+ - ./prompts:/app/prompts
24
+ - ./softprompts:/app/softprompts
25
+ - ./training:/app/training
26
+ deploy:
27
+ resources:
28
+ reservations:
29
+ devices:
30
+ - driver: nvidia
31
+ device_ids: ['0']
32
+ capabilities: [gpu]
docs/Chat-mode.md ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Chat characters
2
+
3
+ Custom chat mode characters are defined by `.yaml` files inside the `characters` folder. An example is included: [Example.yaml](https://github.com/oobabooga/text-generation-webui/blob/main/characters/Example.yaml)
4
+
5
+ The following fields may be defined:
6
+
7
+ | Field | Description |
8
+ |-------|-------------|
9
+ | `name` or `bot` | The character's name. |
10
+ | `your_name` or `user` (optional) | Your name. This overwrites what you had previously written in the `Your name` field in the interface. |
11
+ | `context` | A string that appears at the top of the prompt. It usually contains a description of the character's personality. |
12
+ | `greeting` (optional) | The character's opening message when a new conversation is started. |
13
+ | `example_dialogue` (optional) | A few example messages to guide the model. |
14
+ | `turn_template` (optional) | Used to define where the spaces and new line characters should be in Instruct mode. See the characters in `characters/instruction-following` for examples. |
15
+
16
+ #### Special tokens
17
+
18
+ * `{{char}}` or `<BOT>`: are replaced with the character's name
19
+ * `{{user}}` or `<USER>`: are replaced with your name
20
+
21
+ These replacements happen when the character is loaded, and they apply to the `context`, `greeting`, and `example_dialogue` fields.
22
+
23
+ #### How do I add a profile picture for my character?
24
+
25
+ Put an image with the same name as your character's yaml file into the `characters` folder. For example, if your bot is `Character.yaml`, add `Character.jpg` or `Character.png` to the folder.
26
+
27
+ #### Is the chat history truncated in the prompt?
28
+
29
+ Once your prompt reaches the 2048 token limit, old messages will be removed one at a time. The context string will always stay at the top of the prompt and will never get truncated.
30
+
31
+ #### Pygmalion format characters
32
+
33
+ These are also supported out of the box. Simply put the JSON file in the `characters` folder, or upload it directly from the web UI by clicking on the "Upload character" tab at the bottom.
34
+
35
+ ## Chat styles
36
+
37
+ Custom chat styles can be defined in the `text-generation-webui/css` folder. Simply create a new file with name starting in `chat_style-` and ending in `.css` and it will automatically appear in the "Chat style" dropdown menu in the interface. Examples:
38
+
39
+ ```
40
+ chat_style-cai-chat.css
41
+ chat_style-TheEncrypted777.css
42
+ chat_style-wpp.css
43
+ ```
44
+
45
+ You should use the same class names as in `chat_style-cai-chat.css` in your custom style.
docs/DeepSpeed.md ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ An alternative way of reducing the GPU memory usage of models is to use the `DeepSpeed ZeRO-3` optimization.
2
+
3
+ With this, I have been able to load a 6b model (GPT-J 6B) with less than 6GB of VRAM. The speed of text generation is very decent and much better than what would be accomplished with `--auto-devices --gpu-memory 6`.
4
+
5
+ As far as I know, DeepSpeed is only available for Linux at the moment.
6
+
7
+ ### How to use it
8
+
9
+ 1. Install DeepSpeed:
10
+
11
+ ```
12
+ conda install -c conda-forge mpi4py mpich
13
+ pip install -U deepspeed
14
+ ```
15
+
16
+ 2. Start the web UI replacing `python` with `deepspeed --num_gpus=1` and adding the `--deepspeed` flag. Example:
17
+
18
+ ```
19
+ deepspeed --num_gpus=1 server.py --deepspeed --chat --model gpt-j-6B
20
+ ```
21
+
22
+ ### Learn more
23
+
24
+ For more information, check out [this comment](https://github.com/oobabooga/text-generation-webui/issues/40#issuecomment-1412038622) by 81300, who came up with the DeepSpeed support in this web UI.
docs/Docker.md ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Docker Compose is a way of installing and launching the web UI in an isolated Ubuntu image using only a few commands.
2
+
3
+ In order to create the image as described in the main README, you must have docker compose 2.17 or higher:
4
+
5
+ ```
6
+ ~$ docker compose version
7
+ Docker Compose version v2.17.2
8
+ ```
9
+
10
+ # Intructions by [@loeken](https://github.com/loeken)
11
+
12
+ - [Ubuntu 22.04](#ubuntu-2204)
13
+ - [0. youtube video](#0-youtube-video)
14
+ - [1. update the drivers](#1-update-the-drivers)
15
+ - [2. reboot](#2-reboot)
16
+ - [3. install docker](#3-install-docker)
17
+ - [4. docker \& container toolkit](#4-docker--container-toolkit)
18
+ - [5. clone the repo](#5-clone-the-repo)
19
+ - [6. prepare models](#6-prepare-models)
20
+ - [7. prepare .env file](#7-prepare-env-file)
21
+ - [8. startup docker container](#8-startup-docker-container)
22
+ - [Manjaro](#manjaro)
23
+ - [update the drivers](#update-the-drivers)
24
+ - [reboot](#reboot)
25
+ - [docker \& container toolkit](#docker--container-toolkit)
26
+ - [continue with ubuntu task](#continue-with-ubuntu-task)
27
+ - [Windows](#windows)
28
+ - [0. youtube video](#0-youtube-video-1)
29
+ - [1. choco package manager](#1-choco-package-manager)
30
+ - [2. install drivers/dependencies](#2-install-driversdependencies)
31
+ - [3. install wsl](#3-install-wsl)
32
+ - [4. reboot](#4-reboot)
33
+ - [5. git clone \&\& startup](#5-git-clone--startup)
34
+ - [6. prepare models](#6-prepare-models-1)
35
+ - [7. startup](#7-startup)
36
+ - [notes](#notes)
37
+
38
+ # Ubuntu 22.04
39
+
40
+ ## 0. youtube video
41
+ A video walking you through the setup can be found here:
42
+
43
+ [![oobabooga text-generation-webui setup in docker on ubuntu 22.04](https://img.youtube.com/vi/ELkKWYh8qOk/0.jpg)](https://www.youtube.com/watch?v=ELkKWYh8qOk)
44
+
45
+
46
+ ## 1. update the drivers
47
+ in the the “software updater” update drivers to the last version of the prop driver.
48
+
49
+ ## 2. reboot
50
+ to switch using to new driver
51
+
52
+ ## 3. install docker
53
+ ```bash
54
+ sudo apt update
55
+ sudo apt-get install curl
56
+ sudo mkdir -m 0755 -p /etc/apt/keyrings
57
+ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg
58
+ echo \
59
+ "deb [arch="$(dpkg --print-architecture)" signed-by=/etc/apt/keyrings/docker.gpg] https://download.docker.com/linux/ubuntu \
60
+ "$(. /etc/os-release && echo "$VERSION_CODENAME")" stable" | \
61
+ sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
62
+ sudo apt update
63
+ sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin docker-compose -y
64
+ sudo usermod -aG docker $USER
65
+ newgrp docker
66
+ ```
67
+
68
+ ## 4. docker & container toolkit
69
+ ```bash
70
+ curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
71
+ echo "deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://nvidia.github.io/libnvidia-container/stable/ubuntu22.04/amd64 /" | \
72
+ sudo tee /etc/apt/sources.list.d/nvidia.list > /dev/null
73
+ sudo apt update
74
+ sudo apt install nvidia-docker2 nvidia-container-runtime -y
75
+ sudo systemctl restart docker
76
+ ```
77
+
78
+ ## 5. clone the repo
79
+ ```
80
+ git clone https://github.com/oobabooga/text-generation-webui
81
+ cd text-generation-webui
82
+ ```
83
+
84
+ ## 6. prepare models
85
+ download and place the models inside the models folder. tested with:
86
+
87
+ 4bit
88
+ https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1483891617
89
+ https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1483941105
90
+
91
+ 8bit:
92
+ https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1484235789
93
+
94
+ ## 7. prepare .env file
95
+ edit .env values to your needs.
96
+ ```bash
97
+ cp .env.example .env
98
+ nano .env
99
+ ```
100
+
101
+ ## 8. startup docker container
102
+ ```bash
103
+ docker compose up --build
104
+ ```
105
+
106
+ # Manjaro
107
+ manjaro/arch is similar to ubuntu just the dependency installation is more convenient
108
+
109
+ ## update the drivers
110
+ ```bash
111
+ sudo mhwd -a pci nonfree 0300
112
+ ```
113
+ ## reboot
114
+ ```bash
115
+ reboot
116
+ ```
117
+ ## docker & container toolkit
118
+ ```bash
119
+ yay -S docker docker-compose buildkit gcc nvidia-docker
120
+ sudo usermod -aG docker $USER
121
+ newgrp docker
122
+ sudo systemctl restart docker # required by nvidia-container-runtime
123
+ ```
124
+
125
+ ## continue with ubuntu task
126
+ continue at [5. clone the repo](#5-clone-the-repo)
127
+
128
+ # Windows
129
+ ## 0. youtube video
130
+ A video walking you through the setup can be found here:
131
+ [![oobabooga text-generation-webui setup in docker on windows 11](https://img.youtube.com/vi/ejH4w5b5kFQ/0.jpg)](https://www.youtube.com/watch?v=ejH4w5b5kFQ)
132
+
133
+ ## 1. choco package manager
134
+ install package manager (https://chocolatey.org/ )
135
+ ```
136
+ Set-ExecutionPolicy Bypass -Scope Process -Force; [System.Net.ServicePointManager]::SecurityProtocol = [System.Net.ServicePointManager]::SecurityProtocol -bor 3072; iex ((New-Object System.Net.WebClient).DownloadString('https://community.chocolatey.org/install.ps1'))
137
+ ```
138
+
139
+ ## 2. install drivers/dependencies
140
+ ```
141
+ choco install nvidia-display-driver cuda git docker-desktop
142
+ ```
143
+
144
+ ## 3. install wsl
145
+ wsl --install
146
+
147
+ ## 4. reboot
148
+ after reboot enter username/password in wsl
149
+
150
+ ## 5. git clone && startup
151
+ clone the repo and edit .env values to your needs.
152
+ ```
153
+ cd Desktop
154
+ git clone https://github.com/oobabooga/text-generation-webui
155
+ cd text-generation-webui
156
+ COPY .env.example .env
157
+ notepad .env
158
+ ```
159
+
160
+ ## 6. prepare models
161
+ download and place the models inside the models folder. tested with:
162
+
163
+ 4bit https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1483891617 https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1483941105
164
+
165
+ 8bit: https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1484235789
166
+
167
+ ## 7. startup
168
+ ```
169
+ docker compose up
170
+ ```
171
+
172
+ # notes
173
+
174
+ on older ubuntus you can manually install the docker compose plugin like this:
175
+ ```
176
+ DOCKER_CONFIG=${DOCKER_CONFIG:-$HOME/.docker}
177
+ mkdir -p $DOCKER_CONFIG/cli-plugins
178
+ curl -SL https://github.com/docker/compose/releases/download/v2.17.2/docker-compose-linux-x86_64 -o $DOCKER_CONFIG/cli-plugins/docker-compose
179
+ chmod +x $DOCKER_CONFIG/cli-plugins/docker-compose
180
+ export PATH="$HOME/.docker/cli-plugins:$PATH"
181
+ ```
docs/Extensions.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Extensions are defined by files named `script.py` inside subfolders of `text-generation-webui/extensions`. They are loaded at startup if specified with the `--extensions` flag.
2
+
3
+ For instance, `extensions/silero_tts/script.py` gets loaded with `python server.py --extensions silero_tts`.
4
+
5
+ ## [text-generation-webui-extensions](https://github.com/oobabooga/text-generation-webui-extensions)
6
+
7
+ The link above contains a directory of user extensions for text-generation-webui.
8
+
9
+ If you create an extension, you are welcome to host it in a GitHub repository and submit it to the list above.
10
+
11
+ ## Built-in extensions
12
+
13
+ Most of these have been created by the extremely talented contributors that you can find here: [contributors](https://github.com/oobabooga/text-generation-webui/graphs/contributors?from=2022-12-18&to=&type=a).
14
+
15
+ |Extension|Description|
16
+ |---------|-----------|
17
+ |[api](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/api)| Creates an API with two endpoints, one for streaming at `/api/v1/stream` port 5005 and another for blocking at `/api/v1/generate` port 5000. This is the main API for this web UI. |
18
+ |[google_translate](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/google_translate)| Automatically translates inputs and outputs using Google Translate.|
19
+ |[character_bias](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/character_bias)| Just a very simple example that biases the bot's responses in chat mode.|
20
+ |[gallery](https://github.com/oobabooga/text-generation-webui/blob/main/extensions/gallery/)| Creates a gallery with the chat characters and their pictures. |
21
+ |[silero_tts](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/silero_tts)| Text-to-speech extension using [Silero](https://github.com/snakers4/silero-models). When used in chat mode, it replaces the responses with an audio widget. |
22
+ |[elevenlabs_tts](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/elevenlabs_tts)| Text-to-speech extension using the [ElevenLabs](https://beta.elevenlabs.io/) API. You need an API key to use it. |
23
+ |[send_pictures](https://github.com/oobabooga/text-generation-webui/blob/main/extensions/send_pictures/)| Creates an image upload field that can be used to send images to the bot in chat mode. Captions are automatically generated using BLIP. |
24
+ |[whisper_stt](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/whisper_stt)| Allows you to enter your inputs in chat mode using your microphone. |
25
+ |[sd_api_pictures](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/sd_api_pictures)| Allows you to request pictures from the bot in chat mode, which will be generated using the AUTOMATIC1111 Stable Diffusion API. See examples [here](https://github.com/oobabooga/text-generation-webui/pull/309). |
26
+ |[multimodal](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/multimodal) | Adds multimodality support (text+images). For a detailed description see [README.md](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/multimodal/README.md) in the extension directory. |
27
+ |[openai](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/openai)| Creates an API that mimics the OpenAI API and can be used as a drop-in replacement. |
28
+ |[superbooga](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/superbooga)| An extension that uses ChromaDB to create an arbitrarily large pseudocontext, taking as input text files, URLs, or pasted text. Based on https://github.com/kaiokendev/superbig. |
29
+
30
+ ## How to write an extension
31
+
32
+ script.py may define the special functions and variables below.
33
+
34
+ #### Predefined functions
35
+
36
+ | Function | Description |
37
+ |-------------|-------------|
38
+ | `def ui()` | Creates custom gradio elements when the UI is launched. |
39
+ | `def custom_css()` | Returns custom CSS as a string. It is applied whenever the web UI is loaded. |
40
+ | `def custom_js()` | Same as above but for javascript. |
41
+ | `def input_modifier(string)` | Modifies the input string before it enters the model. In chat mode, it is applied to the user message. Otherwise, it is applied to the entire prompt. |
42
+ | `def output_modifier(string)` | Modifies the output string before it is presented in the UI. In chat mode, it is applied to the bot's reply. Otherwise, it is applied to the entire output. |
43
+ | `def state_modifier(state)` | Modifies the dictionary containing the UI input parameters before it is used by the text generation functions. |
44
+ | `def bot_prefix_modifier(string)` | Applied in chat mode to the prefix for the bot's reply. |
45
+ | `def custom_generate_reply(...)` | Overrides the main text generation function. |
46
+ | `def custom_generate_chat_prompt(...)` | Overrides the prompt generator in chat mode. |
47
+ | `def tokenizer_modifier(state, prompt, input_ids, input_embeds)` | Modifies the `input_ids`/`input_embeds` fed to the model. Should return `prompt`, `input_ids`, `input_embeds`. See the `multimodal` extension for an example. |
48
+ | `def custom_tokenized_length(prompt)` | Used in conjunction with `tokenizer_modifier`, returns the length in tokens of `prompt`. See the `multimodal` extension for an example. |
49
+
50
+ #### `params` dictionary
51
+
52
+ In this dictionary, `display_name` is used to define the displayed name of the extension in the UI, and `is_tab` is used to define whether the extension should appear in a new tab. By default, extensions appear at the bottom of the "Text generation" tab.
53
+
54
+ Example:
55
+
56
+ ```python
57
+ params = {
58
+ "display_name": "Google Translate",
59
+ "is_tab": True,
60
+ }
61
+ ```
62
+
63
+ Additionally, `params` may contain variables that you want to be customizable through a `settings.json` file. For instance, assuming the extension is in `extensions/google_translate`, the variable `language string` in
64
+
65
+ ```python
66
+ params = {
67
+ "display_name": "Google Translate",
68
+ "is_tab": True,
69
+ "language string": "jp"
70
+ }
71
+ ```
72
+
73
+ can be customized by adding a key called `google_translate-language string` to `settings.json`:
74
+
75
+ ```python
76
+ "google_translate-language string": "fr",
77
+ ```
78
+
79
+ That is, the syntax is `extension_name-variable_name`.
80
+
81
+ #### `input_hijack` dictionary
82
+
83
+ ```python
84
+ input_hijack = {
85
+ 'state': False,
86
+ 'value': ["", ""]
87
+ }
88
+ ```
89
+ This is only used in chat mode. If your extension sets `input_hijack['state'] = True` at any moment, the next call to `modules.chat.chatbot_wrapper` will use the values inside `input_hijack['value']` as the user input for text generation. See the `send_pictures` extension above for an example.
90
+
91
+ Additionally, your extension can set the value to be a callback in the form of `def cb(text: str, visible_text: str) -> [str, str]`. See the `multimodal` extension above for an example.
92
+
93
+ ## Using multiple extensions at the same time
94
+
95
+ In order to use your extension, you must start the web UI with the `--extensions` flag followed by the name of your extension (the folder under `text-generation-webui/extension` where `script.py` resides).
96
+
97
+ You can activate more than one extension at a time by providing their names separated by spaces. The input, output, and bot prefix modifiers will be applied in the specified order.
98
+
99
+
100
+ ```
101
+ python server.py --extensions enthusiasm translate # First apply enthusiasm, then translate
102
+ python server.py --extensions translate enthusiasm # First apply translate, then enthusiasm
103
+ ```
104
+
105
+ Do note, that for:
106
+ - `custom_generate_chat_prompt`
107
+ - `custom_generate_reply`
108
+ - `tokenizer_modifier`
109
+ - `custom_tokenized_length`
110
+
111
+ only the first declaration encountered will be used and the rest will be ignored.
112
+
113
+ ## The `bot_prefix_modifier`
114
+
115
+ In chat mode, this function modifies the prefix for a new bot message. For instance, if your bot is named `Marie Antoinette`, the default prefix for a new message will be
116
+
117
+ ```
118
+ Marie Antoinette:
119
+ ```
120
+
121
+ Using `bot_prefix_modifier`, you can change it to:
122
+
123
+ ```
124
+ Marie Antoinette: *I am very enthusiastic*
125
+ ```
126
+
127
+ Marie Antoinette will become very enthusiastic in all her messages.
128
+
129
+ ## `custom_generate_reply` example
130
+
131
+ Once defined in a `script.py`, this function is executed in place of the main generation functions. You can use it to connect the web UI to an external API, or to load a custom model that is not supported yet.
132
+
133
+ Note that in chat mode, this function must only return the new text, whereas in other modes it must return the original prompt + the new text.
134
+
135
+ ```python
136
+ import datetime
137
+
138
+ def custom_generate_reply(question, original_question, seed, state, eos_token, stopping_strings):
139
+ cumulative = ''
140
+ for i in range(10):
141
+ cumulative += f"Counting: {i}...\n"
142
+ yield cumulative
143
+
144
+ cumulative += f"Done! {str(datetime.datetime.now())}"
145
+ yield cumulative
146
+ ```
147
+
148
+ ## `custom_generate_chat_prompt` example
149
+
150
+ Below is an extension that just reproduces the default prompt generator in `modules/chat.py`. You can modify it freely to come up with your own prompts in chat mode.
151
+
152
+ ```python
153
+ def custom_generate_chat_prompt(user_input, state, **kwargs):
154
+ impersonate = kwargs['impersonate'] if 'impersonate' in kwargs else False
155
+ _continue = kwargs['_continue'] if '_continue' in kwargs else False
156
+ also_return_rows = kwargs['also_return_rows'] if 'also_return_rows' in kwargs else False
157
+ is_instruct = state['mode'] == 'instruct'
158
+ rows = [state['context'] if is_instruct else f"{state['context'].strip()}\n"]
159
+ min_rows = 3
160
+
161
+ # Finding the maximum prompt size
162
+ chat_prompt_size = state['chat_prompt_size']
163
+ if shared.soft_prompt:
164
+ chat_prompt_size -= shared.soft_prompt_tensor.shape[1]
165
+
166
+ max_length = min(get_max_prompt_length(state), chat_prompt_size)
167
+
168
+ # Building the turn templates
169
+ if 'turn_template' not in state or state['turn_template'] == '':
170
+ if is_instruct:
171
+ template = '<|user|>\n<|user-message|>\n<|bot|>\n<|bot-message|>\n'
172
+ else:
173
+ template = '<|user|>: <|user-message|>\n<|bot|>: <|bot-message|>\n'
174
+ else:
175
+ template = state['turn_template'].replace(r'\n', '\n')
176
+
177
+ replacements = {
178
+ '<|user|>': state['name1'].strip(),
179
+ '<|bot|>': state['name2'].strip(),
180
+ }
181
+
182
+ user_turn = replace_all(template.split('<|bot|>')[0], replacements)
183
+ bot_turn = replace_all('<|bot|>' + template.split('<|bot|>')[1], replacements)
184
+ user_turn_stripped = replace_all(user_turn.split('<|user-message|>')[0], replacements)
185
+ bot_turn_stripped = replace_all(bot_turn.split('<|bot-message|>')[0], replacements)
186
+
187
+ # Building the prompt
188
+ i = len(shared.history['internal']) - 1
189
+ while i >= 0 and get_encoded_length(''.join(rows)) < max_length:
190
+ if _continue and i == len(shared.history['internal']) - 1:
191
+ rows.insert(1, bot_turn_stripped + shared.history['internal'][i][1].strip())
192
+ else:
193
+ rows.insert(1, bot_turn.replace('<|bot-message|>', shared.history['internal'][i][1].strip()))
194
+
195
+ string = shared.history['internal'][i][0]
196
+ if string not in ['', '<|BEGIN-VISIBLE-CHAT|>']:
197
+ rows.insert(1, replace_all(user_turn, {'<|user-message|>': string.strip(), '<|round|>': str(i)}))
198
+
199
+ i -= 1
200
+
201
+ if impersonate:
202
+ min_rows = 2
203
+ rows.append(user_turn_stripped.rstrip(' '))
204
+ elif not _continue:
205
+ # Adding the user message
206
+ if len(user_input) > 0:
207
+ rows.append(replace_all(user_turn, {'<|user-message|>': user_input.strip(), '<|round|>': str(len(shared.history["internal"]))}))
208
+
209
+ # Adding the Character prefix
210
+ rows.append(apply_extensions("bot_prefix", bot_turn_stripped.rstrip(' ')))
211
+
212
+ while len(rows) > min_rows and get_encoded_length(''.join(rows)) >= max_length:
213
+ rows.pop(1)
214
+
215
+ prompt = ''.join(rows)
216
+ if also_return_rows:
217
+ return prompt, rows
218
+ else:
219
+ return prompt
220
+ ```
docs/FlexGen.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ >FlexGen is a high-throughput generation engine for running large language models with limited GPU memory (e.g., a 16GB T4 GPU or a 24GB RTX3090 gaming card!).
2
+
3
+ https://github.com/FMInference/FlexGen
4
+
5
+ ## Installation
6
+
7
+ No additional installation steps are necessary. FlexGen is in the `requirements.txt` file for this project.
8
+
9
+ ## Converting a model
10
+
11
+ FlexGen only works with the OPT model, and it needs to be converted to numpy format before starting the web UI:
12
+
13
+ ```
14
+ python convert-to-flexgen.py models/opt-1.3b/
15
+ ```
16
+
17
+ The output will be saved to `models/opt-1.3b-np/`.
18
+
19
+ ## Usage
20
+
21
+ The basic command is the following:
22
+
23
+ ```
24
+ python server.py --model opt-1.3b --flexgen
25
+ ```
26
+
27
+ For large models, the RAM usage may be too high and your computer may freeze. If that happens, you can try this:
28
+
29
+ ```
30
+ python server.py --model opt-1.3b --flexgen --compress-weight
31
+ ```
32
+
33
+ With this second command, I was able to run both OPT-6.7b and OPT-13B with **2GB VRAM**, and the speed was good in both cases.
34
+
35
+ You can also manually set the offload strategy with
36
+
37
+ ```
38
+ python server.py --model opt-1.3b --flexgen --percent 0 100 100 0 100 0
39
+ ```
40
+
41
+ where the six numbers after `--percent` are:
42
+
43
+ ```
44
+ the percentage of weight on GPU
45
+ the percentage of weight on CPU
46
+ the percentage of attention cache on GPU
47
+ the percentage of attention cache on CPU
48
+ the percentage of activations on GPU
49
+ the percentage of activations on CPU
50
+ ```
51
+
52
+ You should typically only change the first two numbers. If their sum is less than 100, the remaining layers will be offloaded to the disk, by default into the `text-generation-webui/cache` folder.
53
+
54
+ ## Performance
55
+
56
+ In my experiments with OPT-30B using a RTX 3090 on Linux, I have obtained these results:
57
+
58
+ * `--flexgen --compress-weight --percent 0 100 100 0 100 0`: 0.99 seconds per token.
59
+ * `--flexgen --compress-weight --percent 100 0 100 0 100 0`: 0.765 seconds per token.
60
+
61
+ ## Limitations
62
+
63
+ * Only works with the OPT models.
64
+ * Only two generation parameters are available: `temperature` and `do_sample`.
docs/GPTQ-models-(4-bit-mode).md ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ In 4-bit mode, models are loaded with just 25% of their regular VRAM usage. So LLaMA-7B fits into a 6GB GPU, and LLaMA-30B fits into a 24GB GPU.
2
+
3
+ This is possible thanks to [@qwopqwop200](https://github.com/qwopqwop200/GPTQ-for-LLaMa)'s adaptation of the GPTQ algorithm for LLaMA: https://github.com/qwopqwop200/GPTQ-for-LLaMa
4
+
5
+ GPTQ is a clever quantization algorithm that lightly reoptimizes the weights during quantization so that the accuracy loss is compensated relative to a round-to-nearest quantization. See the paper for more details: https://arxiv.org/abs/2210.17323
6
+
7
+ ## GPTQ-for-LLaMa branches
8
+
9
+ Different branches of GPTQ-for-LLaMa are available:
10
+
11
+ | Branch | Comment |
12
+ |----|----|
13
+ | [Old CUDA branch (recommended)](https://github.com/oobabooga/GPTQ-for-LLaMa/) | The fastest branch, works on Windows and Linux. |
14
+ | [Up-to-date triton branch](https://github.com/qwopqwop200/GPTQ-for-LLaMa) | Slightly more precise than the old CUDA branch from 13b upwards, significantly more precise for 7b. 2x slower for small context size and only works on Linux. |
15
+ | [Up-to-date CUDA branch](https://github.com/qwopqwop200/GPTQ-for-LLaMa/tree/cuda) | As precise as the up-to-date triton branch, 10x slower than the old cuda branch for small context size. |
16
+
17
+ Overall, I recommend using the old CUDA branch. It is included by default in the one-click-installer for this web UI.
18
+
19
+ ## Installation
20
+
21
+ ### Step 0: install nvcc
22
+
23
+ ```
24
+ conda activate textgen
25
+ conda install -c conda-forge cudatoolkit-dev
26
+ ```
27
+
28
+ The command above takes some 10 minutes to run and shows no progress bar or updates along the way.
29
+
30
+ See this issue for more details: https://github.com/oobabooga/text-generation-webui/issues/416#issuecomment-1475078571
31
+
32
+ ### Step 1: install GPTQ-for-LLaMa
33
+
34
+ Clone the GPTQ-for-LLaMa repository into the `text-generation-webui/repositories` subfolder and install it:
35
+
36
+ ```
37
+ mkdir repositories
38
+ cd repositories
39
+ git clone https://github.com/oobabooga/GPTQ-for-LLaMa.git -b cuda
40
+ cd GPTQ-for-LLaMa
41
+ python setup_cuda.py install
42
+ ```
43
+
44
+ You are going to need to have a C++ compiler installed into your system for the last command. On Linux, `sudo apt install build-essential` or equivalent is enough.
45
+
46
+ If you want to you to use the up-to-date CUDA or triton branches instead of the old CUDA branch, use these commands:
47
+
48
+ ```
49
+ cd repositories
50
+ rm -r GPTQ-for-LLaMa
51
+ pip uninstall -y quant-cuda
52
+ git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa.git -b cuda
53
+ ...
54
+ ```
55
+
56
+ ```
57
+ cd repositories
58
+ rm -r GPTQ-for-LLaMa
59
+ pip uninstall -y quant-cuda
60
+ git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa.git -b triton
61
+ ...
62
+ ```
63
+
64
+
65
+ https://github.com/qwopqwop200/GPTQ-for-LLaMa
66
+
67
+ ### Step 2: get the pre-converted weights
68
+
69
+ * Converted without `group-size` (better for the 7b model): https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1483891617
70
+ * Converted with `group-size` (better from 13b upwards): https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1483941105
71
+
72
+ ⚠️ The tokenizer files in the sources above may be outdated. Make sure to obtain the universal LLaMA tokenizer as described [here](https://github.com/oobabooga/text-generation-webui/blob/main/docs/LLaMA-model.md#option-1-pre-converted-weights).
73
+
74
+ ### Step 3: Start the web UI:
75
+
76
+ For the models converted without `group-size`:
77
+
78
+ ```
79
+ python server.py --model llama-7b-4bit
80
+ ```
81
+
82
+ For the models converted with `group-size`:
83
+
84
+ ```
85
+ python server.py --model llama-13b-4bit-128g
86
+ ```
87
+
88
+ The command-line flags `--wbits` and `--groupsize` are automatically detected based on the folder names, but you can also specify them manually like
89
+
90
+ ```
91
+ python server.py --model llama-13b-4bit-128g --wbits 4 --groupsize 128
92
+ ```
93
+
94
+ ## CPU offloading
95
+
96
+ It is possible to offload part of the layers of the 4-bit model to the CPU with the `--pre_layer` flag. The higher the number after `--pre_layer`, the more layers will be allocated to the GPU.
97
+
98
+ With this command, I can run llama-7b with 4GB VRAM:
99
+
100
+ ```
101
+ python server.py --model llama-7b-4bit --pre_layer 20
102
+ ```
103
+
104
+ This is the performance:
105
+
106
+ ```
107
+ Output generated in 123.79 seconds (1.61 tokens/s, 199 tokens)
108
+ ```
109
+
110
+ You can also use multiple GPUs with `pre_layer` if using the oobabooga fork of GPTQ, eg `--pre_layer 30 60` will load a LLaMA-30B model half onto your first GPU and half onto your second, or `--pre_layer 20 40` will load 20 layers onto GPU-0, 20 layers onto GPU-1, and 20 layers offloaded to CPU.
111
+
112
+ ## Using LoRAs in 4-bit mode
113
+
114
+ At the moment, this feature is not officially supported by the relevant libraries, but a patch exists and is supported by this web UI: https://github.com/johnsmith0031/alpaca_lora_4bit
115
+
116
+ In order to use it:
117
+
118
+ 1. Make sure that your requirements are up to date:
119
+
120
+ ```
121
+ cd text-generation-webui
122
+ pip install -r requirements.txt --upgrade
123
+ ```
124
+
125
+ 2. Clone `johnsmith0031/alpaca_lora_4bit` into the repositories folder:
126
+
127
+ ```
128
+ cd text-generation-webui/repositories
129
+ git clone https://github.com/johnsmith0031/alpaca_lora_4bit
130
+ ```
131
+
132
+ ⚠️ I have tested it with the following commit specifically: `2f704b93c961bf202937b10aac9322b092afdce0`
133
+
134
+ 3. Install https://github.com/sterlind/GPTQ-for-LLaMa with this command:
135
+
136
+ ```
137
+ pip install git+https://github.com/sterlind/GPTQ-for-LLaMa.git@lora_4bit
138
+ ```
139
+
140
+ 4. Start the UI with the `--monkey-patch` flag:
141
+
142
+ ```
143
+ python server.py --model llama-7b-4bit-128g --listen --lora tloen_alpaca-lora-7b --monkey-patch
144
+ ```
docs/LLaMA-model.md ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ LLaMA is a Large Language Model developed by Meta AI.
2
+
3
+ It was trained on more tokens than previous models. The result is that the smallest version with 7 billion parameters has similar performance to GPT-3 with 175 billion parameters.
4
+
5
+ This guide will cover usage through the official `transformers` implementation. For 4-bit mode, head over to [GPTQ models (4 bit mode)
6
+ ](GPTQ-models-(4-bit-mode).md).
7
+
8
+ ## Getting the weights
9
+
10
+ ### Option 1: pre-converted weights
11
+
12
+ * Torrent: https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1484235789
13
+ * Direct download: https://huggingface.co/Neko-Institute-of-Science
14
+
15
+ ⚠️ The tokenizers for the Torrent source above and also for many LLaMA fine-tunes available on Hugging Face may be outdated, so I recommend downloading the following universal LLaMA tokenizer:
16
+
17
+ ```
18
+ python download-model.py oobabooga/llama-tokenizer
19
+ ```
20
+
21
+ Once downloaded, it will be automatically applied to **every** `LlamaForCausalLM` model that you try to load.
22
+
23
+ ### Option 2: convert the weights yourself
24
+
25
+ 1. Install the `protobuf` library:
26
+
27
+ ```
28
+ pip install protobuf==3.20.1
29
+ ```
30
+
31
+ 2. Use the script below to convert the model in `.pth` format that you, a fellow academic, downloaded using Meta's official link:
32
+
33
+ ### [convert_llama_weights_to_hf.py](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py)
34
+
35
+ ```
36
+ python convert_llama_weights_to_hf.py --input_dir /path/to/LLaMA --model_size 7B --output_dir /tmp/outputs/llama-7b
37
+ ```
38
+
39
+ 3. Move the `llama-7b` folder inside your `text-generation-webui/models` folder.
40
+
41
+ ## Starting the web UI
42
+
43
+ ```python
44
+ python server.py --model llama-7b
45
+ ```
docs/Low-VRAM-guide.md ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ If you GPU is not large enough to fit a model, try these in the following order:
2
+
3
+ ### Load the model in 8-bit mode
4
+
5
+ ```
6
+ python server.py --load-in-8bit
7
+ ```
8
+
9
+ This reduces the memory usage by half with no noticeable loss in quality. Only newer GPUs support 8-bit mode.
10
+
11
+ ### Split the model across your GPU and CPU
12
+
13
+ ```
14
+ python server.py --auto-devices
15
+ ```
16
+
17
+ If you can load the model with this command but it runs out of memory when you try to generate text, try increasingly limiting the amount of memory allocated to the GPU until the error stops happening:
18
+
19
+ ```
20
+ python server.py --auto-devices --gpu-memory 10
21
+ python server.py --auto-devices --gpu-memory 9
22
+ python server.py --auto-devices --gpu-memory 8
23
+ ...
24
+ ```
25
+
26
+ where the number is in GiB.
27
+
28
+ For finer control, you can also specify the unit in MiB explicitly:
29
+
30
+ ```
31
+ python server.py --auto-devices --gpu-memory 8722MiB
32
+ python server.py --auto-devices --gpu-memory 4725MiB
33
+ python server.py --auto-devices --gpu-memory 3500MiB
34
+ ...
35
+ ```
36
+
37
+ Additionally, you can also set the `--no-cache` value to reduce the GPU usage while generating text at a performance cost. This may allow you to set a higher value for `--gpu-memory`, resulting in a net performance gain.
38
+
39
+ ### Send layers to a disk cache
40
+
41
+ As a desperate last measure, you can split the model across your GPU, CPU, and disk:
42
+
43
+ ```
44
+ python server.py --auto-devices --disk
45
+ ```
46
+
47
+ With this, I am able to load a 30b model into my RTX 3090, but it takes 10 seconds to generate 1 word.
48
+
49
+ ### DeepSpeed (experimental)
50
+
51
+ An experimental alternative to all of the above is to use DeepSpeed: [guide](DeepSpeed.md).
docs/README.md ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # text-generation-webui documentation
2
+
3
+ ## Table of contents
4
+
5
+ * [GPTQ models (4 bit mode)](GPTQ-models-(4-bit-mode).md)
6
+ * [LLaMA model](LLaMA-model.md)
7
+ * [Using LoRAs](Using-LoRAs.md)
8
+ * [llama.cpp models](llama.cpp-models.md)
9
+ * [RWKV model](RWKV-model.md)
10
+ * [Extensions](Extensions.md)
11
+ * [Chat mode](Chat-mode.md)
12
+ * [DeepSpeed](DeepSpeed.md)
13
+ * [FlexGen](FlexGen.md)
14
+ * [Spell book](Spell-book.md)
15
+ * [Low-VRAM-guide](Low-VRAM-guide.md)
16
+ * [System requirements](System-requirements.md)
17
+ * [Windows installation guide](Windows-installation-guide.md)
18
+ * [WSL installation guide](WSL-installation-guide.md)
19
+ * [Docker Compose](Docker.md)
docs/RWKV-model.md ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ > RWKV: RNN with Transformer-level LLM Performance
2
+ >
3
+ > It combines the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, "infinite" ctx_len, and free sentence embedding (using the final hidden state).
4
+
5
+ https://github.com/BlinkDL/RWKV-LM
6
+
7
+ https://github.com/BlinkDL/ChatRWKV
8
+
9
+ ## Using RWKV in the web UI
10
+
11
+ #### 1. Download the model
12
+
13
+ It is available in different sizes:
14
+
15
+ * https://huggingface.co/BlinkDL/rwkv-4-pile-3b/
16
+ * https://huggingface.co/BlinkDL/rwkv-4-pile-7b/
17
+ * https://huggingface.co/BlinkDL/rwkv-4-pile-14b/
18
+
19
+ There are also older releases with smaller sizes like:
20
+
21
+ * https://huggingface.co/BlinkDL/rwkv-4-pile-169m/resolve/main/RWKV-4-Pile-169M-20220807-8023.pth
22
+
23
+ Download the chosen `.pth` and put it directly in the `models` folder.
24
+
25
+ #### 2. Download the tokenizer
26
+
27
+ [20B_tokenizer.json](https://raw.githubusercontent.com/BlinkDL/ChatRWKV/main/v2/20B_tokenizer.json)
28
+
29
+ Also put it directly in the `models` folder. Make sure to not rename it. It should be called `20B_tokenizer.json`.
30
+
31
+ #### 3. Launch the web UI
32
+
33
+ No additional steps are required. Just launch it as you would with any other model.
34
+
35
+ ```
36
+ python server.py --listen --no-stream --model RWKV-4-Pile-169M-20220807-8023.pth
37
+ ```
38
+
39
+ ## Setting a custom strategy
40
+
41
+ It is possible to have very fine control over the offloading and precision for the model with the `--rwkv-strategy` flag. Possible values include:
42
+
43
+ ```
44
+ "cpu fp32" # CPU mode
45
+ "cuda fp16" # GPU mode with float16 precision
46
+ "cuda fp16 *30 -> cpu fp32" # GPU+CPU offloading. The higher the number after *, the higher the GPU allocation.
47
+ "cuda fp16i8" # GPU mode with 8-bit precision
48
+ ```
49
+
50
+ See the README for the PyPl package for more details: https://pypi.org/project/rwkv/
51
+
52
+ ## Compiling the CUDA kernel
53
+
54
+ You can compile the CUDA kernel for the model with `--rwkv-cuda-on`. This should improve the performance a lot but I haven't been able to get it to work yet.
docs/Spell-book.md ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ You have now entered a hidden corner of the internet.
2
+
3
+ A confusing yet intriguing realm of paradoxes and contradictions.
4
+
5
+ A place where you will find out that what you thought you knew, you in fact didn't know, and what you didn't know was in front of you all along.
6
+
7
+ ![](https://i.pinimg.com/originals/6e/e2/7b/6ee27bad351d3aca470d80f1033ba9c6.jpg)
8
+
9
+ *In other words, here I will document little-known facts about this web UI that I could not find another place for in the wiki.*
10
+
11
+ #### You can train LoRAs in CPU mode
12
+
13
+ Load the web UI with
14
+
15
+ ```
16
+ python server.py --cpu
17
+ ```
18
+
19
+ and start training the LoRA from the training tab as usual.
20
+
21
+ #### 8-bit mode works with CPU offloading
22
+
23
+ ```
24
+ python server.py --load-in-8bit --gpu-memory 4000MiB
25
+ ```
26
+
27
+ #### `--pre_layer`, and not `--gpu-memory`, is the right way to do CPU offloading with 4-bit models
28
+
29
+ ```
30
+ python server.py --wbits 4 --groupsize 128 --pre_layer 20
31
+ ```
32
+
33
+ #### Models can be loaded in 32-bit, 16-bit, 8-bit, and 4-bit modes
34
+
35
+ ```
36
+ python server.py --cpu
37
+ python server.py
38
+ python server.py --load-in-8bit
39
+ python server.py --wbits 4
40
+ ```
41
+
42
+ #### The web UI works with any version of GPTQ-for-LLaMa
43
+
44
+ Including the up to date triton and cuda branches. But you have to delete the `repositories/GPTQ-for-LLaMa` folder and reinstall the new one every time:
45
+
46
+ ```
47
+ cd text-generation-webui/repositories
48
+ rm -r GPTQ-for-LLaMa
49
+ pip uninstall quant-cuda
50
+ git clone https://github.com/oobabooga/GPTQ-for-LLaMa -b cuda # or any other repository and branch
51
+ cd GPTQ-for-LLaMa
52
+ python setup_cuda.py install
53
+ ```
54
+
55
+ #### Instruction-following templates are represented as chat characters
56
+
57
+ https://github.com/oobabooga/text-generation-webui/tree/main/characters/instruction-following
58
+
59
+ #### The right way to run Alpaca, Open Assistant, Vicuna, etc is Instruct mode, not normal chat mode
60
+
61
+ Otherwise the prompt will not be formatted correctly.
62
+
63
+ 1. Start the web UI with
64
+
65
+ ```
66
+ python server.py --chat
67
+ ```
68
+
69
+ 2. Click on the "instruct" option under "Chat modes"
70
+
71
+ 3. Select the correct template in the hidden dropdown menu that will become visible.
72
+
73
+ #### Notebook mode is best mode
74
+
75
+ Ascended individuals have realized that notebook mode is the superset of chat mode and can do chats with ultimate flexibility, including group chats, editing replies, starting a new bot reply in a given way, and impersonating.
76
+
77
+ #### RWKV is a RNN
78
+
79
+ Most models are transformers, but not RWKV, which is a RNN. It's a great model.
80
+
81
+ #### `--gpu-memory` is not a hard limit on the GPU memory
82
+
83
+ It is simply a parameter that is passed to the `accelerate` library while loading the model. More memory will be allocated during generation. That's why this parameter has to be set to less than your total GPU memory.
84
+
85
+ #### Contrastive search perhaps the best preset
86
+
87
+ But it uses a ton of VRAM.
88
+
89
+ #### You can check the sha256sum of downloaded models with the download script
90
+
91
+ ```
92
+ python download-model.py facebook/galactica-125m --check
93
+ ```
94
+
95
+ #### The download script continues interrupted downloads by default
96
+
97
+ It doesn't start over.
98
+
99
+ #### You can download models with multiple threads
100
+
101
+ ```
102
+ python download-model.py facebook/galactica-125m --threads 8
103
+ ```
104
+
105
+ #### LoRAs work in 4-bit mode
106
+
107
+ You need to follow [these instructions](GPTQ-models-(4-bit-mode).md#using-loras-in-4-bit-mode) and then start the web UI with the `--monkey-patch` flag.
docs/System-requirements.md ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ These are the VRAM and RAM requirements (in MiB) to run some examples of models **in 16-bit (default) precision**:
2
+
3
+ | model | VRAM (GPU) | RAM |
4
+ |:-----------------------|-------------:|--------:|
5
+ | arxiv_ai_gpt2 | 1512.37 | 5824.2 |
6
+ | blenderbot-1B-distill | 2441.75 | 4425.91 |
7
+ | opt-1.3b | 2509.61 | 4427.79 |
8
+ | gpt-neo-1.3b | 2605.27 | 5851.58 |
9
+ | opt-2.7b | 5058.05 | 4863.95 |
10
+ | gpt4chan_model_float16 | 11653.7 | 4437.71 |
11
+ | gpt-j-6B | 11653.7 | 5633.79 |
12
+ | galactica-6.7b | 12697.9 | 4429.89 |
13
+ | opt-6.7b | 12700 | 4368.66 |
14
+ | bloomz-7b1-p3 | 13483.1 | 4470.34 |
15
+
16
+ #### GPU mode with 8-bit precision
17
+
18
+ Allows you to load models that would not normally fit into your GPU. Enabled by default for 13b and 20b models in this web UI.
19
+
20
+ | model | VRAM (GPU) | RAM |
21
+ |:---------------|-------------:|--------:|
22
+ | opt-13b | 12528.1 | 1152.39 |
23
+ | gpt-neox-20b | 20384 | 2291.7 |
24
+
25
+ #### CPU mode (32-bit precision)
26
+
27
+ A lot slower, but does not require a GPU.
28
+
29
+ On my i5-12400F, 6B models take around 10-20 seconds to respond in chat mode, and around 5 minutes to generate a 200 tokens completion.
30
+
31
+ | model | RAM |
32
+ |:-----------------------|---------:|
33
+ | arxiv_ai_gpt2 | 4430.82 |
34
+ | gpt-neo-1.3b | 6089.31 |
35
+ | opt-1.3b | 8411.12 |
36
+ | blenderbot-1B-distill | 8508.16 |
37
+ | opt-2.7b | 14969.3 |
38
+ | bloomz-7b1-p3 | 21371.2 |
39
+ | gpt-j-6B | 24200.3 |
40
+ | gpt4chan_model | 24246.3 |
41
+ | galactica-6.7b | 26561.4 |
42
+ | opt-6.7b | 29596.6 |
docs/Training-LoRAs.md ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Training Your Own LoRAs
2
+
3
+ The WebUI seeks to make training your own LoRAs as easy as possible. It comes down to just a few simple steps:
4
+
5
+ ### **Step 1**: Make a plan.
6
+ - What base model do you want to use? The LoRA you make has to be matched up to a single architecture (eg LLaMA-13B) and cannot be transferred to others (eg LLaMA-7B, StableLM, etc. would all be different). Derivatives of the same model (eg Alpaca finetune of LLaMA-13B) might be transferrable, but even then it's best to train exactly on what you plan to use.
7
+ - What model format do you want? At time of writing, 8-bit models are most stable, and 4-bit are supported but experimental. In the near future it is likely that 4-bit will be the best option for most users.
8
+ - What are you training it on? Do you want it to learn real information, a simple format, ...?
9
+
10
+ ### **Step 2**: Gather a dataset.
11
+ - If you use a dataset similar to the [Alpaca](https://github.com/gururise/AlpacaDataCleaned/blob/main/alpaca_data_cleaned.json) format, that is natively supported by the `Formatted Dataset` input in the WebUI, with premade formatter options.
12
+ - If you use a dataset that isn't matched to Alpaca's format, but uses the same basic JSON structure, you can make your own format file by copying `training/formats/alpaca-format.json` to a new file and [editing its content](#format-files).
13
+ - If you can get the dataset into a simple text file, that works too! You can train using the `Raw text file` input option.
14
+ - This means you can for example just copy/paste a chatlog/documentation page/whatever you want, shove it in a plain text file, and train on it.
15
+ - If you use a structured dataset not in this format, you may have to find an external way to convert it - or open an issue to request native support.
16
+
17
+ ### **Step 3**: Do the training.
18
+ - **3.1**: Load the WebUI, and your model.
19
+ - Make sure you don't have any LoRAs already loaded (unless you want to train for multi-LoRA usage).
20
+ - **3.2**: Open the `Training` tab at the top, `Train LoRA` sub-tab.
21
+ - **3.3**: Fill in the name of the LoRA, select your dataset in the dataset options.
22
+ - **3.4**: Select other parameters to your preference. See [parameters below](#parameters).
23
+ - **3.5**: click `Start LoRA Training`, and wait.
24
+ - It can take a few hours for a large dataset, or just a few minute if doing a small run.
25
+ - You may want to monitor your [loss value](#loss) while it goes.
26
+
27
+ ### **Step 4**: Evaluate your results.
28
+ - Load the LoRA under the Models Tab.
29
+ - You can go test-drive it on the `Text generation` tab, or you can use the `Perplexity evaluation` sub-tab of the `Training` tab.
30
+ - If you used the `Save every n steps` option, you can grab prior copies of the model from sub-folders within the LoRA model's folder and try them instead.
31
+
32
+ ### **Step 5**: Re-run if you're unhappy.
33
+ - Make sure to unload the LoRA before training it.
34
+ - You can simply resume a prior run - use `Copy parameters from` to select your LoRA, and edit parameters. Note that you cannot change the `Rank` of an already created LoRA.
35
+ - If you want to resume from a checkpoint saved along the way, simply copy the contents of the checkpoint folder into the LoRA's folder.
36
+ - (Note: `adapter_model.bin` is the important file that holds the actual LoRA content).
37
+ - This will start Learning Rate and Steps back to the start. If you want to resume as if you were midway through, you can adjust your Learning Rate to the last reported LR in logs and reduce your epochs.
38
+ - Or, you can start over entirely if you prefer.
39
+ - If your model is producing corrupted outputs, you probably need to start over and use a lower Learning Rate.
40
+ - If your model isn't learning detailed information but you want it to, you might need to just run more epochs, or you might need a higher Rank.
41
+ - If your model is enforcing a format you didn't want, you may need to tweak your dataset, or start over and not train as far.
42
+
43
+ ## Format Files
44
+
45
+ If using JSON formatted datasets, they are presumed to be in the following approximate format:
46
+
47
+ ```json
48
+ [
49
+ {
50
+ "somekey": "somevalue",
51
+ "key2": "value2"
52
+ },
53
+ {
54
+ // etc
55
+ }
56
+ ]
57
+ ```
58
+
59
+ Where the keys (eg `somekey`, `key2` above) are standardized, and relatively consistent across the dataset, and the values (eg `somevalue`, `value2`) contain the content actually intended to be trained.
60
+
61
+ For Alpaca, the keys are `instruction`, `input`, and `output`, wherein `input` is sometimes blank.
62
+
63
+ A simple format file for Alpaca to be used as a chat bot is:
64
+
65
+ ```json
66
+ {
67
+ "instruction,output": "User: %instruction%\nAssistant: %output%",
68
+ "instruction,input,output": "User: %instruction%: %input%\nAssistant: %output%"
69
+ }
70
+ ```
71
+
72
+ Note that the keys (eg `instruction,output`) are a comma-separated list of dataset keys, and the values are a simple string that use those keys with `%%`.
73
+
74
+ So for example if a dataset has `"instruction": "answer my question"`, then the format file's `User: %instruction%\n` will be automatically filled in as `User: answer my question\n`.
75
+
76
+ If you have different sets of key inputs, you can make your own format file to match it. This format-file is designed to be as simple as possible to enable easy editing to match your needs.
77
+
78
+ ## Parameters
79
+
80
+ The basic purpose and function of each parameter is documented on-page in the WebUI, so read through them in the UI to understand your options.
81
+
82
+ That said, here's a guide to the most important parameter choices you should consider:
83
+
84
+ ### VRAM
85
+
86
+ - First, you must consider your VRAM availability.
87
+ - Generally, under default settings, VRAM usage for training with default parameters is very close to when generating text (with 1000+ tokens of context) (ie, if you can generate text, you can train LoRAs).
88
+ - Note: worse by default in the 4-bit monkeypatch currently. Reduce `Micro Batch Size` to `1` to restore this to expectations.
89
+ - If you have VRAM to spare, setting higher batch sizes will use more VRAM and get you better quality training in exchange.
90
+ - If you have large data, setting a higher cutoff length may be beneficial, but will cost significant VRAM. If you can spare some, set your batch size to `1` and see how high you can push your cutoff length.
91
+ - If you're low on VRAM, reducing batch size or cutoff length will of course improve that.
92
+ - Don't be afraid to just try it and see what happens. If it's too much, it will just error out, and you can lower settings and try again.
93
+
94
+ ### Rank
95
+
96
+ - Second, you want to consider the amount of learning you want.
97
+ - For example, you may wish to just learn a dialogue format (as in the case of Alpaca) in which case setting a low `Rank` value (32 or lower) works great.
98
+ - Or, you might be training on project documentation you want the bot to understand and be able to understand questions about, in which case the higher the rank, the better.
99
+ - Generally, higher Rank = more precise learning = more total content learned = more VRAM usage while training.
100
+
101
+ ### Learning Rate and Epochs
102
+
103
+ - Third, how carefully you want it to be learned.
104
+ - In other words, how okay or not you are with the model losing unrelated understandings.
105
+ - You can control this with 3 key settings: the Learning Rate, its scheduler, and your total epochs.
106
+ - The learning rate controls how much change is made to the model by each token it sees.
107
+ - It's in scientific notation normally, so for example `3e-4` means `3 * 10^-4` which is `0.0003`. The number after `e-` controls how many `0`s are in the number.
108
+ - Higher values let training run faster, but also are more likely to corrupt prior data in the model.
109
+ - You essentially have two variables to balance: the LR, and Epochs.
110
+ - If you make LR higher, you can set Epochs equally lower to match. High LR + low epochs = very fast, low quality training.
111
+ - If you make LR low, set epochs high. Low LR + high epochs = slow but high-quality training.
112
+ - The scheduler controls change-over-time as you train - it starts high, and then goes low. This helps balance getting data in, and having decent quality, at the same time.
113
+ - You can see graphs of the different scheduler options [in the HuggingFace docs here](https://moon-ci-docs.huggingface.co/docs/transformers/pr_1/en/main_classes/optimizer_schedules#transformers.SchedulerType)
114
+
115
+ ## Loss
116
+
117
+ When you're running training, the WebUI's console window will log reports that include, among other things, a numeric value named `Loss`. It will start as a high number, and gradually get lower and lower as it goes.
118
+
119
+ "Loss" in the world of AI training theoretically means "how close is the model to perfect", with `0` meaning "absolutely perfect". This is calculated by measuring the difference between the model outputting exactly the text you're training it to output, and what it actually outputs.
120
+
121
+ In practice, a good LLM should have a very complex variable range of ideas running in its artificial head, so a loss of `0` would indicate that the model has broken and forgotten to how think about anything other than what you trained it.
122
+
123
+ So, in effect, Loss is a balancing game: you want to get it low enough that it understands your data, but high enough that it isn't forgetting everything else. Generally, if it goes below `1.0`, it's going to start forgetting its prior memories, and you should stop training. In some cases you may prefer to take it as low as `0.5` (if you want it to be very very predictable). Different goals have different needs, so don't be afraid to experiment and see what works best for you.
124
+
125
+ Note: if you see Loss start at or suddenly jump to exactly `0`, it is likely something has gone wrong in your training process (eg model corruption).
126
+
127
+ ## Note: 4-Bit Monkeypatch
128
+
129
+ The [4-bit LoRA monkeypatch](GPTQ-models-(4-bit-mode).md#using-loras-in-4-bit-mode) works for training, but has side effects:
130
+ - VRAM usage is higher currently. You can reduce the `Micro Batch Size` to `1` to compensate.
131
+ - Models do funky things. LoRAs apply themselves, or refuse to apply, or spontaneously error out, or etc. It can be helpful to reload base model or restart the WebUI between training/usage to minimize chances of anything going haywire.
132
+ - Loading or working with multiple LoRAs at the same time doesn't currently work.
133
+ - Generally, recognize and treat the monkeypatch as the dirty temporary hack it is - it works, but isn't very stable. It will get better in time when everything is merged upstream for full official support.
134
+
135
+ ## Legacy notes
136
+
137
+ LoRA training was contributed by [mcmonkey4eva](https://github.com/mcmonkey4eva) in PR [#570](https://github.com/oobabooga/text-generation-webui/pull/570).
138
+
139
+ ### Using the original alpaca-lora code
140
+
141
+ Kept here for reference. The Training tab has much more features than this method.
142
+
143
+ ```
144
+ conda activate textgen
145
+ git clone https://github.com/tloen/alpaca-lora
146
+ ```
147
+
148
+ Edit those two lines in `alpaca-lora/finetune.py` to use your existing model folder instead of downloading everything from decapoda:
149
+
150
+ ```
151
+ model = LlamaForCausalLM.from_pretrained(
152
+ "models/llama-7b",
153
+ load_in_8bit=True,
154
+ device_map="auto",
155
+ )
156
+ tokenizer = LlamaTokenizer.from_pretrained(
157
+ "models/llama-7b", add_eos_token=True
158
+ )
159
+ ```
160
+
161
+ Run the script with:
162
+
163
+ ```
164
+ python finetune.py
165
+ ```
166
+
167
+ It just works. It runs at 22.32s/it, with 1170 iterations in total, so about 7 hours and a half for training a LoRA. RTX 3090, 18153MiB VRAM used, drawing maximum power (350W, room heater mode).
docs/Using-LoRAs.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Based on https://github.com/tloen/alpaca-lora
2
+
3
+ ## Instructions
4
+
5
+ 1. Download a LoRA, for instance:
6
+
7
+ ```
8
+ python download-model.py tloen/alpaca-lora-7b
9
+ ```
10
+
11
+ 2. Load the LoRA. 16-bit, 8-bit, and CPU modes work:
12
+
13
+ ```
14
+ python server.py --model llama-7b-hf --lora tloen_alpaca-lora-7b
15
+ python server.py --model llama-7b-hf --lora tloen_alpaca-lora-7b --load-in-8bit
16
+ python server.py --model llama-7b-hf --lora tloen_alpaca-lora-7b --cpu
17
+ ```
18
+
19
+ * For using LoRAs in 4-bit mode, follow [these special instructions](GPTQ-models-(4-bit-mode).md#using-loras-in-4-bit-mode).
20
+
21
+ * Instead of using the `--lora` command-line flag, you can also select the LoRA in the "Parameters" tab of the interface.
22
+
23
+ ## Prompt
24
+ For the Alpaca LoRA in particular, the prompt must be formatted like this:
25
+
26
+ ```
27
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
28
+ ### Instruction:
29
+ Write a Python script that generates text using the transformers library.
30
+ ### Response:
31
+ ```
32
+
33
+ Sample output:
34
+
35
+ ```
36
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
37
+ ### Instruction:
38
+ Write a Python script that generates text using the transformers library.
39
+ ### Response:
40
+
41
+ import transformers
42
+ from transformers import AutoTokenizer, AutoModelForCausalLM
43
+ tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
44
+ model = AutoModelForCausalLM.from_pretrained("bert-base-uncased")
45
+ texts = ["Hello world", "How are you"]
46
+ for sentence in texts:
47
+ sentence = tokenizer(sentence)
48
+ print(f"Generated {len(sentence)} tokens from '{sentence}'")
49
+ output = model(sentences=sentence).predict()
50
+ print(f"Predicted {len(output)} tokens for '{sentence}':\n{output}")
51
+ ```
52
+
53
+ ## Training a LoRA
54
+
55
+ You can train your own LoRAs from the `Training` tab. See [Training LoRAs](Training-LoRAs.md) for details.
docs/WSL-installation-guide.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Guide created by [@jfryton](https://github.com/jfryton). Thank you jfryton.
2
+
3
+ -----
4
+
5
+ Here's an easy-to-follow, step-by-step guide for installing Windows Subsystem for Linux (WSL) with Ubuntu on Windows 10/11:
6
+
7
+ ## Step 1: Enable WSL
8
+
9
+ 1. Press the Windows key + X and click on "Windows PowerShell (Admin)" or "Windows Terminal (Admin)" to open PowerShell or Terminal with administrator privileges.
10
+ 2. In the PowerShell window, type the following command and press Enter:
11
+
12
+ ```
13
+ wsl --install
14
+ ```
15
+
16
+ If this command doesn't work, you can enable WSL with the following command for Windows 10:
17
+
18
+ ```
19
+ wsl --set-default-version 1
20
+ ```
21
+
22
+ For Windows 11, you can use:
23
+
24
+ ```
25
+ wsl --set-default-version 2
26
+ ```
27
+
28
+ You may be prompted to restart your computer. If so, save your work and restart.
29
+
30
+ ## Step 2: Install Ubuntu
31
+
32
+ 1. Open the Microsoft Store.
33
+ 2. Search for "Ubuntu" in the search bar.
34
+ 3. Choose the desired Ubuntu version (e.g., Ubuntu 20.04 LTS) and click "Get" or "Install" to download and install the Ubuntu app.
35
+ 4. Once the installation is complete, click "Launch" or search for "Ubuntu" in the Start menu and open the app.
36
+
37
+ ## Step 3: Set up Ubuntu
38
+
39
+ 1. When you first launch the Ubuntu app, it will take a few minutes to set up. Be patient as it installs the necessary files and sets up your environment.
40
+ 2. Once the setup is complete, you will be prompted to create a new UNIX username and password. Choose a username and password, and make sure to remember them, as you will need them for future administrative tasks within the Ubuntu environment.
41
+
42
+ ## Step 4: Update and upgrade packages
43
+
44
+ 1. After setting up your username and password, it's a good idea to update and upgrade your Ubuntu system. Run the following commands in the Ubuntu terminal:
45
+
46
+ ```
47
+ sudo apt update
48
+ sudo apt upgrade
49
+ ```
50
+
51
+ 2. Enter your password when prompted. This will update the package list and upgrade any outdated packages.
52
+
53
+ Congratulations! You have now installed WSL with Ubuntu on your Windows 10/11 system. You can use the Ubuntu terminal for various tasks, like running Linux commands, installing packages, or managing files.
54
+
55
+ You can launch your WSL Ubuntu installation by selecting the Ubuntu app (like any other program installed on your computer) or typing 'ubuntu' into Powershell or Terminal.
56
+
57
+ ## Step 5: Proceed with Linux instructions
58
+
59
+ 1. You can now follow the Linux setup instructions. If you receive any error messages about a missing tool or package, just install them using apt:
60
+
61
+ ```
62
+ sudo apt install [missing package]
63
+ ```
64
+
65
+ You will probably need to install build-essential
66
+
67
+ ```
68
+ sudo apt install build-essential
69
+ ```
70
+
71
+ If you face any issues or need to troubleshoot, you can always refer to the official Microsoft documentation for WSL: https://docs.microsoft.com/en-us/windows/wsl/
72
+
73
+ ## Bonus: Port Forwarding
74
+
75
+ By default, you won't be able to access the webui from another device on your local network. You will need to setup the appropriate port forwarding using the following command (using PowerShell or Terminal with administrator privileges).
76
+
77
+ ```
78
+ netsh interface portproxy add v4tov4 listenaddress=0.0.0.0 listenport=7860 connectaddress=localhost connectport=7860
79
+ ```
docs/Windows-installation-guide.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ If you are having trouble following the installation instructions in the README, Reddit user [Technical_Leather949](https://www.reddit.com/user/Technical_Leather949/) has created a more detailed, step-by-step guide covering:
2
+
3
+ * Windows installation
4
+ * 8-bit mode on Windows
5
+ * LLaMA
6
+ * LLaMA 4-bit
7
+
8
+ The guide can be found here: https://www.reddit.com/r/LocalLLaMA/comments/11o6o3f/how_to_install_llama_8bit_and_4bit/
9
+
docs/llama.cpp-models.md ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Using llama.cpp in the web UI
2
+
3
+ ## Setting up the models
4
+
5
+ #### Pre-converted
6
+
7
+ Place the model in the `models` folder, making sure that its name contains `ggml` somewhere and ends in `.bin`.
8
+
9
+ #### Convert LLaMA yourself
10
+
11
+ Follow the instructions in the llama.cpp README to generate the `ggml-model.bin` file: https://github.com/ggerganov/llama.cpp#usage
12
+
13
+ ## GPU offloading
14
+
15
+ Enabled with the `--n-gpu-layers` parameter. If you have enough VRAM, use a high number like `--n-gpu-layers 200000` to offload all layers to the GPU.
16
+
17
+ Note that you need to manually install `llama-cpp-python` with GPU support. To do that:
18
+
19
+ #### Linux
20
+
21
+ ```
22
+ pip uninstall -y llama-cpp-python
23
+ CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python --no-cache-dir
24
+ ```
25
+
26
+ #### Windows
27
+
28
+ ```
29
+ pip uninstall -y llama-cpp-python
30
+ set CMAKE_ARGS="-DLLAMA_CUBLAS=on"
31
+ set FORCE_CMAKE=1
32
+ pip install llama-cpp-python --no-cache-dir
33
+ ```
34
+
35
+ Here you can find the different compilation options for OpenBLAS / cuBLAS / CLBlast: https://pypi.org/project/llama-cpp-python/
36
+
37
+ ## Performance
38
+
39
+ This was the performance of llama-7b int4 on my i5-12400F (cpu only):
40
+
41
+ > Output generated in 33.07 seconds (6.05 tokens/s, 200 tokens, context 17)
42
+
43
+ You can change the number of threads with `--threads N`.
download-model.py CHANGED
@@ -8,78 +8,55 @@ python download-model.py facebook/opt-1.3b
8
 
9
  import argparse
10
  import base64
 
 
11
  import json
12
- import multiprocessing
13
  import re
14
  import sys
15
  from pathlib import Path
16
 
17
  import requests
18
  import tqdm
 
19
 
20
- parser = argparse.ArgumentParser()
21
- parser.add_argument('MODEL', type=str, default=None, nargs='?')
22
- parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.')
23
- parser.add_argument('--threads', type=int, default=1, help='Number of files to download simultaneously.')
24
- parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).')
25
- args = parser.parse_args()
26
-
27
- def get_file(args):
28
- url = args[0]
29
- output_folder = args[1]
30
- idx = args[2]
31
- tot = args[3]
32
-
33
- print(f"Downloading file {idx} of {tot}...")
34
- r = requests.get(url, stream=True)
35
- with open(output_folder / Path(url.split('/')[-1]), 'wb') as f:
36
- total_size = int(r.headers.get('content-length', 0))
37
- block_size = 1024
38
- t = tqdm.tqdm(total=total_size, unit='iB', unit_scale=True)
39
- for data in r.iter_content(block_size):
40
- t.update(len(data))
41
- f.write(data)
42
- t.close()
43
-
44
- def sanitize_branch_name(branch_name):
45
- pattern = re.compile(r"^[a-zA-Z0-9._-]+$")
46
- if pattern.match(branch_name):
47
- return branch_name
48
- else:
49
- raise ValueError("Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.")
50
 
51
  def select_model_from_default_options():
52
  models = {
53
- "Pygmalion 6B original": ("PygmalionAI", "pygmalion-6b", "b8344bb4eb76a437797ad3b19420a13922aaabe1"),
54
- "Pygmalion 6B main": ("PygmalionAI", "pygmalion-6b", "main"),
55
- "Pygmalion 6B dev": ("PygmalionAI", "pygmalion-6b", "dev"),
56
- "Pygmalion 2.7B": ("PygmalionAI", "pygmalion-2.7b", "main"),
57
- "Pygmalion 1.3B": ("PygmalionAI", "pygmalion-1.3b", "main"),
58
- "Pygmalion 350m": ("PygmalionAI", "pygmalion-350m", "main"),
59
- "OPT 6.7b": ("facebook", "opt-6.7b", "main"),
60
- "OPT 2.7b": ("facebook", "opt-2.7b", "main"),
61
- "OPT 1.3b": ("facebook", "opt-1.3b", "main"),
62
- "OPT 350m": ("facebook", "opt-350m", "main"),
 
63
  }
64
- choices = {}
65
 
 
66
  print("Select the model that you want to download:\n")
67
- for i,name in enumerate(models):
68
- char = chr(ord('A')+i)
69
  choices[char] = name
70
  print(f"{char}) {name}")
71
- char = chr(ord('A')+len(models))
72
- print(f"{char}) None of the above")
73
 
 
 
 
 
74
  print()
75
  print("Input> ", end='')
76
  choice = input()[0].strip().upper()
77
- if choice == char:
78
- print("""\nThen type the name of your desired Hugging Face model in the format organization/name.
 
 
79
 
80
  Examples:
81
- PygmalionAI/pygmalion-6b
82
  facebook/opt-1.3b
 
83
  """)
84
 
85
  print("Input> ", end='')
@@ -92,17 +69,38 @@ facebook/opt-1.3b
92
 
93
  return model, branch
94
 
95
- def get_download_links_from_huggingface(model, branch):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
  base = "https://huggingface.co"
97
- page = f"/api/models/{model}/tree/{branch}?cursor="
98
  cursor = b""
99
 
100
  links = []
 
101
  classifications = []
102
  has_pytorch = False
 
 
103
  has_safetensors = False
 
104
  while True:
105
- content = requests.get(f"{base}{page}{cursor.decode()}").content
 
 
 
106
 
107
  dict = json.loads(content)
108
  if len(dict) == 0:
@@ -110,18 +108,24 @@ def get_download_links_from_huggingface(model, branch):
110
 
111
  for i in range(len(dict)):
112
  fname = dict[i]['path']
 
 
113
 
114
- is_pytorch = re.match("pytorch_model.*\.bin", fname)
115
- is_safetensors = re.match("model.*\.safetensors", fname)
116
- is_tokenizer = re.match("tokenizer.*\.model", fname)
117
- is_text = re.match(".*\.(txt|json)", fname) or is_tokenizer
 
 
118
 
119
- if any((is_pytorch, is_safetensors, is_text, is_tokenizer)):
 
 
120
  if is_text:
121
  links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
122
  classifications.append('text')
123
  continue
124
- if not args.text_only:
125
  links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
126
  if is_safetensors:
127
  has_safetensors = True
@@ -129,48 +133,145 @@ def get_download_links_from_huggingface(model, branch):
129
  elif is_pytorch:
130
  has_pytorch = True
131
  classifications.append('pytorch')
 
 
 
 
 
 
132
 
133
  cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
134
  cursor = base64.b64encode(cursor)
135
  cursor = cursor.replace(b'=', b'%3D')
136
 
137
  # If both pytorch and safetensors are available, download safetensors only
138
- if has_pytorch and has_safetensors:
139
- for i in range(len(classifications)-1, -1, -1):
140
- if classifications[i] == 'pytorch':
141
  links.pop(i)
142
 
143
- return links
144
 
145
- if __name__ == '__main__':
146
- model = args.MODEL
147
- branch = args.branch
148
- if model is None:
149
- model, branch = select_model_from_default_options()
150
- else:
151
- if model[-1] == '/':
152
- model = model[:-1]
153
- branch = args.branch
154
- if branch is None:
155
- branch = "main"
156
- else:
157
- try:
158
- branch = sanitize_branch_name(branch)
159
- except ValueError as err_branch:
160
- print(f"Error: {err_branch}")
161
- sys.exit()
162
  if branch != 'main':
163
- output_folder = Path("models") / (model.split('/')[-1] + f'_{branch}')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164
  else:
165
- output_folder = Path("models") / model.split('/')[-1]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166
  if not output_folder.exists():
167
  output_folder.mkdir()
168
-
169
- links = get_download_links_from_huggingface(model, branch)
 
 
 
 
 
 
 
170
 
171
  # Downloading the files
172
  print(f"Downloading the model to {output_folder}")
173
- pool = multiprocessing.Pool(processes=args.threads)
174
- results = pool.map(get_file, [[links[i], output_folder, i+1, len(links)] for i in range(len(links))])
175
- pool.close()
176
- pool.join()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
  import argparse
10
  import base64
11
+ import datetime
12
+ import hashlib
13
  import json
 
14
  import re
15
  import sys
16
  from pathlib import Path
17
 
18
  import requests
19
  import tqdm
20
+ from tqdm.contrib.concurrent import thread_map
21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
  def select_model_from_default_options():
24
  models = {
25
+ "OPT 6.7B": ("facebook", "opt-6.7b", "main"),
26
+ "OPT 2.7B": ("facebook", "opt-2.7b", "main"),
27
+ "OPT 1.3B": ("facebook", "opt-1.3b", "main"),
28
+ "OPT 350M": ("facebook", "opt-350m", "main"),
29
+ "GALACTICA 6.7B": ("facebook", "galactica-6.7b", "main"),
30
+ "GALACTICA 1.3B": ("facebook", "galactica-1.3b", "main"),
31
+ "GALACTICA 125M": ("facebook", "galactica-125m", "main"),
32
+ "Pythia-6.9B-deduped": ("EleutherAI", "pythia-6.9b-deduped", "main"),
33
+ "Pythia-2.8B-deduped": ("EleutherAI", "pythia-2.8b-deduped", "main"),
34
+ "Pythia-1.4B-deduped": ("EleutherAI", "pythia-1.4b-deduped", "main"),
35
+ "Pythia-410M-deduped": ("EleutherAI", "pythia-410m-deduped", "main"),
36
  }
 
37
 
38
+ choices = {}
39
  print("Select the model that you want to download:\n")
40
+ for i, name in enumerate(models):
41
+ char = chr(ord('A') + i)
42
  choices[char] = name
43
  print(f"{char}) {name}")
 
 
44
 
45
+ char_hugging = chr(ord('A') + len(models))
46
+ print(f"{char_hugging}) Manually specify a Hugging Face model")
47
+ char_exit = chr(ord('A') + len(models) + 1)
48
+ print(f"{char_exit}) Do not download a model")
49
  print()
50
  print("Input> ", end='')
51
  choice = input()[0].strip().upper()
52
+ if choice == char_exit:
53
+ exit()
54
+ elif choice == char_hugging:
55
+ print("""\nType the name of your desired Hugging Face model in the format organization/name.
56
 
57
  Examples:
 
58
  facebook/opt-1.3b
59
+ EleutherAI/pythia-1.4b-deduped
60
  """)
61
 
62
  print("Input> ", end='')
 
69
 
70
  return model, branch
71
 
72
+
73
+ def sanitize_model_and_branch_names(model, branch):
74
+ if model[-1] == '/':
75
+ model = model[:-1]
76
+ if branch is None:
77
+ branch = "main"
78
+ else:
79
+ pattern = re.compile(r"^[a-zA-Z0-9._-]+$")
80
+ if not pattern.match(branch):
81
+ raise ValueError("Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.")
82
+
83
+ return model, branch
84
+
85
+
86
+ def get_download_links_from_huggingface(model, branch, text_only=False):
87
  base = "https://huggingface.co"
88
+ page = f"/api/models/{model}/tree/{branch}"
89
  cursor = b""
90
 
91
  links = []
92
+ sha256 = []
93
  classifications = []
94
  has_pytorch = False
95
+ has_pt = False
96
+ has_ggml = False
97
  has_safetensors = False
98
+ is_lora = False
99
  while True:
100
+ url = f"{base}{page}" + (f"?cursor={cursor.decode()}" if cursor else "")
101
+ r = requests.get(url, timeout=10)
102
+ r.raise_for_status()
103
+ content = r.content
104
 
105
  dict = json.loads(content)
106
  if len(dict) == 0:
 
108
 
109
  for i in range(len(dict)):
110
  fname = dict[i]['path']
111
+ if not is_lora and fname.endswith(('adapter_config.json', 'adapter_model.bin')):
112
+ is_lora = True
113
 
114
+ is_pytorch = re.match("(pytorch|adapter)_model.*\.bin", fname)
115
+ is_safetensors = re.match(".*\.safetensors", fname)
116
+ is_pt = re.match(".*\.pt", fname)
117
+ is_ggml = re.match(".*ggml.*\.bin", fname)
118
+ is_tokenizer = re.match("(tokenizer|ice).*\.model", fname)
119
+ is_text = re.match(".*\.(txt|json|py|md)", fname) or is_tokenizer
120
 
121
+ if any((is_pytorch, is_safetensors, is_pt, is_ggml, is_tokenizer, is_text)):
122
+ if 'lfs' in dict[i]:
123
+ sha256.append([fname, dict[i]['lfs']['oid']])
124
  if is_text:
125
  links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
126
  classifications.append('text')
127
  continue
128
+ if not text_only:
129
  links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
130
  if is_safetensors:
131
  has_safetensors = True
 
133
  elif is_pytorch:
134
  has_pytorch = True
135
  classifications.append('pytorch')
136
+ elif is_pt:
137
+ has_pt = True
138
+ classifications.append('pt')
139
+ elif is_ggml:
140
+ has_ggml = True
141
+ classifications.append('ggml')
142
 
143
  cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
144
  cursor = base64.b64encode(cursor)
145
  cursor = cursor.replace(b'=', b'%3D')
146
 
147
  # If both pytorch and safetensors are available, download safetensors only
148
+ if (has_pytorch or has_pt) and has_safetensors:
149
+ for i in range(len(classifications) - 1, -1, -1):
150
+ if classifications[i] in ['pytorch', 'pt']:
151
  links.pop(i)
152
 
153
+ return links, sha256, is_lora
154
 
155
+
156
+ def get_output_folder(model, branch, is_lora, base_folder=None):
157
+ if base_folder is None:
158
+ base_folder = 'models' if not is_lora else 'loras'
159
+
160
+ output_folder = f"{'_'.join(model.split('/')[-2:])}"
 
 
 
 
 
 
 
 
 
 
 
161
  if branch != 'main':
162
+ output_folder += f'_{branch}'
163
+ output_folder = Path(base_folder) / output_folder
164
+ return output_folder
165
+
166
+
167
+ def get_single_file(url, output_folder, start_from_scratch=False):
168
+ filename = Path(url.rsplit('/', 1)[1])
169
+ output_path = output_folder / filename
170
+ if output_path.exists() and not start_from_scratch:
171
+ # Check if the file has already been downloaded completely
172
+ r = requests.get(url, stream=True, timeout=10)
173
+ total_size = int(r.headers.get('content-length', 0))
174
+ if output_path.stat().st_size >= total_size:
175
+ return
176
+ # Otherwise, resume the download from where it left off
177
+ headers = {'Range': f'bytes={output_path.stat().st_size}-'}
178
+ mode = 'ab'
179
  else:
180
+ headers = {}
181
+ mode = 'wb'
182
+
183
+ r = requests.get(url, stream=True, headers=headers, timeout=10)
184
+ with open(output_path, mode) as f:
185
+ total_size = int(r.headers.get('content-length', 0))
186
+ block_size = 1024
187
+ with tqdm.tqdm(total=total_size, unit='iB', unit_scale=True, bar_format='{l_bar}{bar}| {n_fmt:6}/{total_fmt:6} {rate_fmt:6}') as t:
188
+ for data in r.iter_content(block_size):
189
+ t.update(len(data))
190
+ f.write(data)
191
+
192
+
193
+ def start_download_threads(file_list, output_folder, start_from_scratch=False, threads=1):
194
+ thread_map(lambda url: get_single_file(url, output_folder, start_from_scratch=start_from_scratch), file_list, max_workers=threads, disable=True)
195
+
196
+
197
+ def download_model_files(model, branch, links, sha256, output_folder, start_from_scratch=False, threads=1):
198
+ # Creating the folder and writing the metadata
199
  if not output_folder.exists():
200
  output_folder.mkdir()
201
+ with open(output_folder / 'huggingface-metadata.txt', 'w') as f:
202
+ f.write(f'url: https://huggingface.co/{model}\n')
203
+ f.write(f'branch: {branch}\n')
204
+ f.write(f'download date: {str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))}\n')
205
+ sha256_str = ''
206
+ for i in range(len(sha256)):
207
+ sha256_str += f' {sha256[i][1]} {sha256[i][0]}\n'
208
+ if sha256_str != '':
209
+ f.write(f'sha256sum:\n{sha256_str}')
210
 
211
  # Downloading the files
212
  print(f"Downloading the model to {output_folder}")
213
+ start_download_threads(links, output_folder, start_from_scratch=start_from_scratch, threads=threads)
214
+
215
+
216
+ def check_model_files(model, branch, links, sha256, output_folder):
217
+ # Validate the checksums
218
+ validated = True
219
+ for i in range(len(sha256)):
220
+ fpath = (output_folder / sha256[i][0])
221
+
222
+ if not fpath.exists():
223
+ print(f"The following file is missing: {fpath}")
224
+ validated = False
225
+ continue
226
+
227
+ with open(output_folder / sha256[i][0], "rb") as f:
228
+ bytes = f.read()
229
+ file_hash = hashlib.sha256(bytes).hexdigest()
230
+ if file_hash != sha256[i][1]:
231
+ print(f'Checksum failed: {sha256[i][0]} {sha256[i][1]}')
232
+ validated = False
233
+ else:
234
+ print(f'Checksum validated: {sha256[i][0]} {sha256[i][1]}')
235
+
236
+ if validated:
237
+ print('[+] Validated checksums of all model files!')
238
+ else:
239
+ print('[-] Invalid checksums. Rerun download-model.py with the --clean flag.')
240
+
241
+
242
+ if __name__ == '__main__':
243
+
244
+ parser = argparse.ArgumentParser()
245
+ parser.add_argument('MODEL', type=str, default=None, nargs='?')
246
+ parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.')
247
+ parser.add_argument('--threads', type=int, default=1, help='Number of files to download simultaneously.')
248
+ parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).')
249
+ parser.add_argument('--output', type=str, default=None, help='The folder where the model should be saved.')
250
+ parser.add_argument('--clean', action='store_true', help='Does not resume the previous download.')
251
+ parser.add_argument('--check', action='store_true', help='Validates the checksums of model files.')
252
+ args = parser.parse_args()
253
+
254
+ branch = args.branch
255
+ model = args.MODEL
256
+ if model is None:
257
+ model, branch = select_model_from_default_options()
258
+
259
+ # Cleaning up the model/branch names
260
+ try:
261
+ model, branch = sanitize_model_and_branch_names(model, branch)
262
+ except ValueError as err_branch:
263
+ print(f"Error: {err_branch}")
264
+ sys.exit()
265
+
266
+ # Getting the download links from Hugging Face
267
+ links, sha256, is_lora = get_download_links_from_huggingface(model, branch, text_only=args.text_only)
268
+
269
+ # Getting the output folder
270
+ output_folder = get_output_folder(model, branch, is_lora, base_folder=args.output)
271
+
272
+ if args.check:
273
+ # Check previously downloaded files
274
+ check_model_files(model, branch, links, sha256, output_folder)
275
+ else:
276
+ # Download files
277
+ download_model_files(model, branch, links, sha256, output_folder, threads=args.threads)
extensions/api/blocking_api.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from http.server import BaseHTTPRequestHandler, ThreadingHTTPServer
3
+ from threading import Thread
4
+
5
+ from extensions.api.util import build_parameters, try_start_cloudflared
6
+ from modules import shared
7
+ from modules.text_generation import encode, generate_reply
8
+
9
+
10
+ class Handler(BaseHTTPRequestHandler):
11
+ def do_GET(self):
12
+ if self.path == '/api/v1/model':
13
+ self.send_response(200)
14
+ self.end_headers()
15
+ response = json.dumps({
16
+ 'result': shared.model_name
17
+ })
18
+
19
+ self.wfile.write(response.encode('utf-8'))
20
+ else:
21
+ self.send_error(404)
22
+
23
+ def do_POST(self):
24
+ content_length = int(self.headers['Content-Length'])
25
+ body = json.loads(self.rfile.read(content_length).decode('utf-8'))
26
+
27
+ if self.path == '/api/v1/generate':
28
+ self.send_response(200)
29
+ self.send_header('Content-Type', 'application/json')
30
+ self.end_headers()
31
+
32
+ prompt = body['prompt']
33
+ generate_params = build_parameters(body)
34
+ stopping_strings = generate_params.pop('stopping_strings')
35
+ generate_params['stream'] = False
36
+
37
+ generator = generate_reply(
38
+ prompt, generate_params, stopping_strings=stopping_strings, is_chat=False)
39
+
40
+ answer = ''
41
+ for a in generator:
42
+ answer = a
43
+
44
+ response = json.dumps({
45
+ 'results': [{
46
+ 'text': answer
47
+ }]
48
+ })
49
+ self.wfile.write(response.encode('utf-8'))
50
+ elif self.path == '/api/v1/token-count':
51
+ self.send_response(200)
52
+ self.send_header('Content-Type', 'application/json')
53
+ self.end_headers()
54
+
55
+ tokens = encode(body['prompt'])[0]
56
+ response = json.dumps({
57
+ 'results': [{
58
+ 'tokens': len(tokens)
59
+ }]
60
+ })
61
+ self.wfile.write(response.encode('utf-8'))
62
+ else:
63
+ self.send_error(404)
64
+
65
+
66
+ def _run_server(port: int, share: bool = False):
67
+ address = '0.0.0.0' if shared.args.listen else '127.0.0.1'
68
+
69
+ server = ThreadingHTTPServer((address, port), Handler)
70
+
71
+ def on_start(public_url: str):
72
+ print(f'Starting non-streaming server at public url {public_url}/api')
73
+
74
+ if share:
75
+ try:
76
+ try_start_cloudflared(port, max_attempts=3, on_start=on_start)
77
+ except Exception:
78
+ pass
79
+ else:
80
+ print(
81
+ f'Starting API at http://{address}:{port}/api')
82
+
83
+ server.serve_forever()
84
+
85
+
86
+ def start_server(port: int, share: bool = False):
87
+ Thread(target=_run_server, args=[port, share], daemon=True).start()
extensions/api/requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ flask_cloudflared==0.0.12
2
+ websockets==11.0.2
extensions/api/script.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ import extensions.api.blocking_api as blocking_api
2
+ import extensions.api.streaming_api as streaming_api
3
+ from modules import shared
4
+
5
+ def setup():
6
+ blocking_api.start_server(shared.args.api_blocking_port, share=shared.args.public_api)
7
+ streaming_api.start_server(shared.args.api_streaming_port, share=shared.args.public_api)
extensions/api/streaming_api.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import json
3
+ from threading import Thread
4
+
5
+ from websockets.server import serve
6
+
7
+ from extensions.api.util import build_parameters, try_start_cloudflared
8
+ from modules import shared
9
+ from modules.text_generation import generate_reply
10
+
11
+ PATH = '/api/v1/stream'
12
+
13
+
14
+ async def _handle_connection(websocket, path):
15
+
16
+ if path != PATH:
17
+ print(f'Streaming api: unknown path: {path}')
18
+ return
19
+
20
+ async for message in websocket:
21
+ message = json.loads(message)
22
+
23
+ prompt = message['prompt']
24
+ generate_params = build_parameters(message)
25
+ stopping_strings = generate_params.pop('stopping_strings')
26
+ generate_params['stream'] = True
27
+
28
+ generator = generate_reply(
29
+ prompt, generate_params, stopping_strings=stopping_strings, is_chat=False)
30
+
31
+ # As we stream, only send the new bytes.
32
+ skip_index = 0
33
+ message_num = 0
34
+
35
+ for a in generator:
36
+ to_send = a[skip_index:]
37
+ await websocket.send(json.dumps({
38
+ 'event': 'text_stream',
39
+ 'message_num': message_num,
40
+ 'text': to_send
41
+ }))
42
+
43
+ await asyncio.sleep(0)
44
+
45
+ skip_index += len(to_send)
46
+ message_num += 1
47
+
48
+ await websocket.send(json.dumps({
49
+ 'event': 'stream_end',
50
+ 'message_num': message_num
51
+ }))
52
+
53
+
54
+ async def _run(host: str, port: int):
55
+ async with serve(_handle_connection, host, port, ping_interval=None):
56
+ await asyncio.Future() # run forever
57
+
58
+
59
+ def _run_server(port: int, share: bool = False):
60
+ address = '0.0.0.0' if shared.args.listen else '127.0.0.1'
61
+
62
+ def on_start(public_url: str):
63
+ public_url = public_url.replace('https://', 'wss://')
64
+ print(f'Starting streaming server at public url {public_url}{PATH}')
65
+
66
+ if share:
67
+ try:
68
+ try_start_cloudflared(port, max_attempts=3, on_start=on_start)
69
+ except Exception as e:
70
+ print(e)
71
+ else:
72
+ print(f'Starting streaming server at ws://{address}:{port}{PATH}')
73
+
74
+ asyncio.run(_run(host=address, port=port))
75
+
76
+
77
+ def start_server(port: int, share: bool = False):
78
+ Thread(target=_run_server, args=[port, share], daemon=True).start()
extensions/api/util.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import traceback
3
+ from threading import Thread
4
+ from typing import Callable, Optional
5
+
6
+ from modules.text_generation import get_encoded_length
7
+
8
+
9
+ def build_parameters(body):
10
+ prompt = body['prompt']
11
+
12
+ prompt_lines = [k.strip() for k in prompt.split('\n')]
13
+ max_context = body.get('max_context_length', 2048)
14
+ while len(prompt_lines) >= 0 and get_encoded_length('\n'.join(prompt_lines)) > max_context:
15
+ prompt_lines.pop(0)
16
+
17
+ prompt = '\n'.join(prompt_lines)
18
+
19
+ generate_params = {
20
+ 'max_new_tokens': int(body.get('max_new_tokens', body.get('max_length', 200))),
21
+ 'do_sample': bool(body.get('do_sample', True)),
22
+ 'temperature': float(body.get('temperature', 0.5)),
23
+ 'top_p': float(body.get('top_p', 1)),
24
+ 'typical_p': float(body.get('typical_p', body.get('typical', 1))),
25
+ 'repetition_penalty': float(body.get('repetition_penalty', body.get('rep_pen', 1.1))),
26
+ 'encoder_repetition_penalty': float(body.get('encoder_repetition_penalty', 1.0)),
27
+ 'top_k': int(body.get('top_k', 0)),
28
+ 'min_length': int(body.get('min_length', 0)),
29
+ 'no_repeat_ngram_size': int(body.get('no_repeat_ngram_size', 0)),
30
+ 'num_beams': int(body.get('num_beams', 1)),
31
+ 'penalty_alpha': float(body.get('penalty_alpha', 0)),
32
+ 'length_penalty': float(body.get('length_penalty', 1)),
33
+ 'early_stopping': bool(body.get('early_stopping', False)),
34
+ 'seed': int(body.get('seed', -1)),
35
+ 'add_bos_token': bool(body.get('add_bos_token', True)),
36
+ 'truncation_length': int(body.get('truncation_length', 2048)),
37
+ 'ban_eos_token': bool(body.get('ban_eos_token', False)),
38
+ 'skip_special_tokens': bool(body.get('skip_special_tokens', True)),
39
+ 'custom_stopping_strings': '', # leave this blank
40
+ 'stopping_strings': body.get('stopping_strings', []),
41
+ }
42
+
43
+ return generate_params
44
+
45
+
46
+ def try_start_cloudflared(port: int, max_attempts: int = 3, on_start: Optional[Callable[[str], None]] = None):
47
+ Thread(target=_start_cloudflared, args=[
48
+ port, max_attempts, on_start], daemon=True).start()
49
+
50
+
51
+ def _start_cloudflared(port: int, max_attempts: int = 3, on_start: Optional[Callable[[str], None]] = None):
52
+ try:
53
+ from flask_cloudflared import _run_cloudflared
54
+ except ImportError:
55
+ print('You should install flask_cloudflared manually')
56
+ raise Exception(
57
+ 'flask_cloudflared not installed. Make sure you installed the requirements.txt for this extension.')
58
+
59
+ for _ in range(max_attempts):
60
+ try:
61
+ public_url = _run_cloudflared(port, port + 1)
62
+
63
+ if on_start:
64
+ on_start(public_url)
65
+
66
+ return
67
+ except Exception:
68
+ traceback.print_exc()
69
+ time.sleep(3)
70
+
71
+ raise Exception('Could not start cloudflared.')
extensions/character_bias/script.py CHANGED
@@ -1,42 +1,83 @@
 
 
1
  import gradio as gr
2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  params = {
4
  "activate": True,
5
  "bias string": " *I am so happy*",
 
6
  }
7
 
 
8
  def input_modifier(string):
9
  """
10
  This function is applied to your text inputs before
11
  they are fed into the model.
12
- """
13
-
14
  return string
15
 
 
16
  def output_modifier(string):
17
  """
18
  This function is applied to the model outputs.
19
  """
20
-
21
  return string
22
 
 
23
  def bot_prefix_modifier(string):
24
  """
25
  This function is only applied in chat mode. It modifies
26
  the prefix text for the Bot and can be used to bias its
27
  behavior.
28
  """
29
-
30
- if params['activate'] == True:
31
- return f'{string} {params["bias string"].strip()} '
 
 
32
  else:
33
  return string
34
 
 
35
  def ui():
36
  # Gradio elements
37
  activate = gr.Checkbox(value=params['activate'], label='Activate character bias')
38
- string = gr.Textbox(value=params["bias string"], label='Character bias')
 
 
39
 
40
  # Event functions to update the parameters in the backend
41
- string.change(lambda x: params.update({"bias string": x}), string, None)
 
 
 
 
 
 
 
 
 
 
 
42
  activate.change(lambda x: params.update({"activate": x}), activate, None)
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
  import gradio as gr
4
 
5
+ # get the current directory of the script
6
+ current_dir = os.path.dirname(os.path.abspath(__file__))
7
+
8
+ # check if the bias_options.txt file exists, if not, create it
9
+ bias_file = os.path.join(current_dir, "bias_options.txt")
10
+ if not os.path.isfile(bias_file):
11
+ with open(bias_file, "w") as f:
12
+ f.write("*I am so happy*\n*I am so sad*\n*I am so excited*\n*I am so bored*\n*I am so angry*")
13
+
14
+ # read bias options from the text file
15
+ with open(bias_file, "r") as f:
16
+ bias_options = [line.strip() for line in f.readlines()]
17
+
18
  params = {
19
  "activate": True,
20
  "bias string": " *I am so happy*",
21
+ "use custom string": False,
22
  }
23
 
24
+
25
  def input_modifier(string):
26
  """
27
  This function is applied to your text inputs before
28
  they are fed into the model.
29
+ """
 
30
  return string
31
 
32
+
33
  def output_modifier(string):
34
  """
35
  This function is applied to the model outputs.
36
  """
 
37
  return string
38
 
39
+
40
  def bot_prefix_modifier(string):
41
  """
42
  This function is only applied in chat mode. It modifies
43
  the prefix text for the Bot and can be used to bias its
44
  behavior.
45
  """
46
+ if params['activate']:
47
+ if params['use custom string']:
48
+ return f'{string} {params["custom string"].strip()} '
49
+ else:
50
+ return f'{string} {params["bias string"].strip()} '
51
  else:
52
  return string
53
 
54
+
55
  def ui():
56
  # Gradio elements
57
  activate = gr.Checkbox(value=params['activate'], label='Activate character bias')
58
+ dropdown_string = gr.Dropdown(choices=bias_options, value=params["bias string"], label='Character bias', info='To edit the options in this dropdown edit the "bias_options.txt" file')
59
+ use_custom_string = gr.Checkbox(value=False, label='Use custom bias textbox instead of dropdown')
60
+ custom_string = gr.Textbox(value="", placeholder="Enter custom bias string", label="Custom Character Bias", info='To use this textbox activate the checkbox above')
61
 
62
  # Event functions to update the parameters in the backend
63
+ def update_bias_string(x):
64
+ if x:
65
+ params.update({"bias string": x})
66
+ else:
67
+ params.update({"bias string": dropdown_string.get()})
68
+ return x
69
+
70
+ def update_custom_string(x):
71
+ params.update({"custom string": x})
72
+
73
+ dropdown_string.change(update_bias_string, dropdown_string, None)
74
+ custom_string.change(update_custom_string, custom_string, None)
75
  activate.change(lambda x: params.update({"activate": x}), activate, None)
76
+ use_custom_string.change(lambda x: params.update({"use custom string": x}), use_custom_string, None)
77
+
78
+ # Group elements together depending on the selected option
79
+ def bias_string_group():
80
+ if use_custom_string.value:
81
+ return gr.Group([use_custom_string, custom_string])
82
+ else:
83
+ return dropdown_string
extensions/elevenlabs_tts/requirements.txt CHANGED
@@ -1,3 +1 @@
1
- elevenlabslib
2
- soundfile
3
- sounddevice
 
1
+ elevenlabs==0.2.*
 
 
extensions/elevenlabs_tts/script.py CHANGED
@@ -1,113 +1,180 @@
 
1
  from pathlib import Path
2
 
 
3
  import gradio as gr
4
- from elevenlabslib import *
5
- from elevenlabslib.helpers import *
6
 
7
  params = {
8
  'activate': True,
9
- 'api_key': '12345',
10
  'selected_voice': 'None',
 
 
11
  }
12
 
13
- initial_voice = ['None']
14
  wav_idx = 0
15
- user = ElevenLabsUser(params['api_key'])
16
- user_info = None
17
-
18
-
19
- # Check if the API is valid and refresh the UI accordingly.
20
- def check_valid_api():
21
-
22
- global user, user_info, params
23
-
24
- user = ElevenLabsUser(params['api_key'])
25
- user_info = user._get_subscription_data()
26
- print('checking api')
27
- if params['activate'] == False:
28
- return gr.update(value='Disconnected')
29
- elif user_info is None:
30
- print('Incorrect API Key')
31
- return gr.update(value='Disconnected')
32
- else:
33
- print('Got an API Key!')
34
- return gr.update(value='Connected')
35
-
36
- # Once the API is verified, get the available voices and update the dropdown list
37
  def refresh_voices():
38
-
39
- global user, user_info
40
-
41
- your_voices = [None]
42
- if user_info is not None:
43
- for voice in user.get_available_voices():
44
- your_voices.append(voice.initialName)
45
- return gr.Dropdown.update(choices=your_voices)
46
- else:
47
- return
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
  def remove_surrounded_chars(string):
50
- new_string = ""
51
- in_star = False
52
- for char in string:
53
- if char == '*':
54
- in_star = not in_star
55
- elif not in_star:
56
- new_string += char
57
- return new_string
 
58
 
59
  def input_modifier(string):
60
  """
61
  This function is applied to your text inputs before
62
  they are fed into the model.
63
  """
 
 
 
 
 
 
 
 
 
64
 
65
  return string
66
 
 
67
  def output_modifier(string):
68
  """
69
  This function is applied to the model outputs.
70
  """
71
 
72
- global params, wav_idx, user, user_info
73
-
74
- if params['activate'] == False:
75
- return string
76
- elif user_info == None:
77
  return string
78
 
 
79
  string = remove_surrounded_chars(string)
80
  string = string.replace('"', '')
81
  string = string.replace('“', '')
82
  string = string.replace('\n', ' ')
83
  string = string.strip()
84
-
85
  if string == '':
86
  string = 'empty reply, try regenerating'
87
-
88
- output_file = Path(f'extensions/elevenlabs_tts/outputs/{wav_idx:06d}.wav'.format(wav_idx))
89
- voice = user.get_voices_by_name(params['selected_voice'])[0]
90
- audio_data = voice.generate_audio_bytes(string)
91
- save_bytes_to_path(Path(f'extensions/elevenlabs_tts/outputs/{wav_idx:06d}.wav'), audio_data)
92
-
93
- string = f'<audio src="file/{output_file.as_posix()}" controls></audio>'
94
- wav_idx += 1
 
 
 
 
 
 
 
 
 
 
 
 
 
95
  return string
96
 
 
97
  def ui():
 
 
 
 
98
 
99
  # Gradio elements
100
  with gr.Row():
101
  activate = gr.Checkbox(value=params['activate'], label='Activate TTS')
102
- connection_status = gr.Textbox(value='Disconnected', label='Connection Status')
103
- voice = gr.Dropdown(value=params['selected_voice'], choices=initial_voice, label='TTS Voice')
 
 
 
 
 
104
  with gr.Row():
105
  api_key = gr.Textbox(placeholder="Enter your API key.", label='API Key')
106
- connect = gr.Button(value='Connect')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107
 
108
  # Event functions to update the parameters in the backend
109
  activate.change(lambda x: params.update({'activate': x}), activate, None)
110
  voice.change(lambda x: params.update({'selected_voice': x}), voice, None)
111
- api_key.change(lambda x: params.update({'api_key': x}), api_key, None)
112
- connect.click(check_valid_api, [], connection_status)
113
- connect.click(refresh_voices, [], voice)
 
 
 
1
+ import re
2
  from pathlib import Path
3
 
4
+ import elevenlabs
5
  import gradio as gr
6
+ from modules import chat, shared
 
7
 
8
  params = {
9
  'activate': True,
10
+ 'api_key': None,
11
  'selected_voice': 'None',
12
+ 'autoplay': False,
13
+ 'show_text': True,
14
  }
15
 
16
+ voices = None
17
  wav_idx = 0
18
+
19
+
20
+ def update_api_key(key):
21
+ params['api_key'] = key
22
+ if key is not None:
23
+ elevenlabs.set_api_key(key)
24
+
25
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  def refresh_voices():
27
+ global params
28
+ your_voices = elevenlabs.voices()
29
+ voice_names = [voice.name for voice in your_voices]
30
+ return voice_names
31
+
32
+
33
+ def refresh_voices_dd():
34
+ all_voices = refresh_voices()
35
+ return gr.Dropdown.update(value=all_voices[0], choices=all_voices)
36
+
37
+
38
+ def remove_tts_from_history():
39
+ for i, entry in enumerate(shared.history['internal']):
40
+ shared.history['visible'][i] = [shared.history['visible'][i][0], entry[1]]
41
+
42
+
43
+ def toggle_text_in_history():
44
+ for i, entry in enumerate(shared.history['visible']):
45
+ visible_reply = entry[1]
46
+ if visible_reply.startswith('<audio'):
47
+ if params['show_text']:
48
+ reply = shared.history['internal'][i][1]
49
+ shared.history['visible'][i] = [
50
+ shared.history['visible'][i][0], f"{visible_reply.split('</audio>')[0]}</audio>\n\n{reply}"
51
+ ]
52
+ else:
53
+ shared.history['visible'][i] = [
54
+ shared.history['visible'][i][0], f"{visible_reply.split('</audio>')[0]}</audio>"
55
+ ]
56
+
57
 
58
  def remove_surrounded_chars(string):
59
+ # this expression matches to 'as few symbols as possible (0 upwards) between any asterisks' OR
60
+ # 'as few symbols as possible (0 upwards) between an asterisk and the end of the string'
61
+ return re.sub('\*[^\*]*?(\*|$)', '', string)
62
+
63
+
64
+ def state_modifier(state):
65
+ state['stream'] = False
66
+ return state
67
+
68
 
69
  def input_modifier(string):
70
  """
71
  This function is applied to your text inputs before
72
  they are fed into the model.
73
  """
74
+ # Remove autoplay from the last reply
75
+ if shared.is_chat() and len(shared.history['internal']) > 0:
76
+ shared.history['visible'][-1] = [
77
+ shared.history['visible'][-1][0],
78
+ shared.history['visible'][-1][1].replace('controls autoplay>', 'controls>')
79
+ ]
80
+
81
+ if params['activate']:
82
+ shared.processing_message = "*Is recording a voice message...*"
83
 
84
  return string
85
 
86
+
87
  def output_modifier(string):
88
  """
89
  This function is applied to the model outputs.
90
  """
91
 
92
+ global params, wav_idx
93
+
94
+ if not params['activate']:
 
 
95
  return string
96
 
97
+ original_string = string
98
  string = remove_surrounded_chars(string)
99
  string = string.replace('"', '')
100
  string = string.replace('“', '')
101
  string = string.replace('\n', ' ')
102
  string = string.strip()
 
103
  if string == '':
104
  string = 'empty reply, try regenerating'
105
+
106
+ output_file = Path(f'extensions/elevenlabs_tts/outputs/{wav_idx:06d}.mp3'.format(wav_idx))
107
+ print(f'Outputing audio to {str(output_file)}')
108
+ try:
109
+ audio = elevenlabs.generate(text=string, voice=params['selected_voice'], model="eleven_monolingual_v1")
110
+ elevenlabs.save(audio, str(output_file))
111
+
112
+ autoplay = 'autoplay' if params['autoplay'] else ''
113
+ string = f'<audio src="file/{output_file.as_posix()}" controls {autoplay}></audio>'
114
+ wav_idx += 1
115
+ except elevenlabs.api.error.UnauthenticatedRateLimitError:
116
+ string = "🤖 ElevenLabs Unauthenticated Rate Limit Reached - Please create an API key to continue\n\n"
117
+ except elevenlabs.api.error.RateLimitError:
118
+ string = "🤖 ElevenLabs API Tier Limit Reached\n\n"
119
+ except elevenlabs.api.error.APIError as err:
120
+ string = f"🤖 ElevenLabs Error: {err}\n\n"
121
+
122
+ if params['show_text']:
123
+ string += f'\n\n{original_string}'
124
+
125
+ shared.processing_message = "*Is typing...*"
126
  return string
127
 
128
+
129
  def ui():
130
+ global voices
131
+ if not voices:
132
+ voices = refresh_voices()
133
+ params['selected_voice'] = voices[0]
134
 
135
  # Gradio elements
136
  with gr.Row():
137
  activate = gr.Checkbox(value=params['activate'], label='Activate TTS')
138
+ autoplay = gr.Checkbox(value=params['autoplay'], label='Play TTS automatically')
139
+ show_text = gr.Checkbox(value=params['show_text'], label='Show message text under audio player')
140
+
141
+ with gr.Row():
142
+ voice = gr.Dropdown(value=params['selected_voice'], choices=voices, label='TTS Voice')
143
+ refresh = gr.Button(value='Refresh')
144
+
145
  with gr.Row():
146
  api_key = gr.Textbox(placeholder="Enter your API key.", label='API Key')
147
+
148
+ with gr.Row():
149
+ convert = gr.Button('Permanently replace audios with the message texts')
150
+ convert_cancel = gr.Button('Cancel', visible=False)
151
+ convert_confirm = gr.Button('Confirm (cannot be undone)', variant="stop", visible=False)
152
+
153
+ # Convert history with confirmation
154
+ convert_arr = [convert_confirm, convert, convert_cancel]
155
+ convert.click(lambda: [gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)], None, convert_arr)
156
+ convert_confirm.click(
157
+ lambda: [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)], None, convert_arr).then(
158
+ remove_tts_from_history, None, None).then(
159
+ chat.save_history, shared.gradio['mode'], None, show_progress=False).then(
160
+ chat.redraw_html, shared.reload_inputs, shared.gradio['display'])
161
+
162
+ convert_cancel.click(lambda: [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)], None, convert_arr)
163
+
164
+ # Toggle message text in history
165
+ show_text.change(
166
+ lambda x: params.update({"show_text": x}), show_text, None).then(
167
+ toggle_text_in_history, None, None).then(
168
+ chat.save_history, shared.gradio['mode'], None, show_progress=False).then(
169
+ chat.redraw_html, shared.reload_inputs, shared.gradio['display'])
170
+
171
+ convert_cancel.click(lambda: [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)], None, convert_arr)
172
 
173
  # Event functions to update the parameters in the backend
174
  activate.change(lambda x: params.update({'activate': x}), activate, None)
175
  voice.change(lambda x: params.update({'selected_voice': x}), voice, None)
176
+ api_key.change(update_api_key, api_key, None)
177
+ # connect.click(check_valid_api, [], connection_status)
178
+ refresh.click(refresh_voices_dd, [], voice)
179
+ # Event functions to update the parameters in the backend
180
+ autoplay.change(lambda x: params.update({"autoplay": x}), autoplay, None)
extensions/gallery/script.py CHANGED
@@ -3,18 +3,27 @@ from pathlib import Path
3
  import gradio as gr
4
 
5
  from modules.html_generator import get_image_cache
 
6
 
7
 
8
- def generate_html():
9
  css = """
10
- .character-gallery {
11
  margin: 1rem 0;
12
- display: grid;
13
  grid-template-columns: repeat(auto-fit, minmax(150px, 1fr));
14
  grid-column-gap: 0.4rem;
15
  grid-row-gap: 1.2rem;
16
  }
17
 
 
 
 
 
 
 
 
 
18
  .character-container {
19
  cursor: pointer;
20
  text-align: center;
@@ -45,38 +54,43 @@ def generate_html():
45
  overflow-wrap: anywhere;
46
  }
47
  """
 
48
 
49
- container_html = f'<style>{css}</style><div class="character-gallery">'
50
 
 
 
51
  # Iterate through files in image folder
52
  for file in sorted(Path("characters").glob("*")):
53
- if file.name.endswith(".json"):
54
- character = file.name.replace(".json", "")
55
- container_html += f'<div class="character-container" onclick=\'document.getElementById("character-menu").children[1].children[1].value = "{character}"; document.getElementById("character-menu").children[1].children[1].dispatchEvent(new Event("change"));\'>'
56
  image_html = "<div class='placeholder'></div>"
57
 
58
- for i in [
59
- f"characters/{character}.png",
60
- f"characters/{character}.jpg",
61
- f"characters/{character}.jpeg",
62
- ]:
63
-
64
- path = Path(i)
65
  if path.exists():
66
- try:
67
- image_html = f'<img src="file/{get_image_cache(path)}">'
68
- break
69
- except:
70
- continue
71
 
72
  container_html += f'{image_html} <span class="character-name">{character}</span>'
73
  container_html += "</div>"
 
 
 
 
 
 
 
74
 
75
- container_html += "</div>"
76
- return container_html
77
 
78
  def ui():
79
- with gr.Accordion("Character gallery"):
80
  update = gr.Button("Refresh")
81
- gallery = gr.HTML(value=generate_html())
 
 
 
 
 
 
82
  update.click(generate_html, [], gallery)
 
 
3
  import gradio as gr
4
 
5
  from modules.html_generator import get_image_cache
6
+ from modules.shared import gradio
7
 
8
 
9
+ def generate_css():
10
  css = """
11
+ .character-gallery > .gallery {
12
  margin: 1rem 0;
13
+ display: grid !important;
14
  grid-template-columns: repeat(auto-fit, minmax(150px, 1fr));
15
  grid-column-gap: 0.4rem;
16
  grid-row-gap: 1.2rem;
17
  }
18
 
19
+ .character-gallery > .label {
20
+ display: none !important;
21
+ }
22
+
23
+ .character-gallery button.gallery-item {
24
+ display: contents;
25
+ }
26
+
27
  .character-container {
28
  cursor: pointer;
29
  text-align: center;
 
54
  overflow-wrap: anywhere;
55
  }
56
  """
57
+ return css
58
 
 
59
 
60
+ def generate_html():
61
+ cards = []
62
  # Iterate through files in image folder
63
  for file in sorted(Path("characters").glob("*")):
64
+ if file.suffix in [".json", ".yml", ".yaml"]:
65
+ character = file.stem
66
+ container_html = '<div class="character-container">'
67
  image_html = "<div class='placeholder'></div>"
68
 
69
+ for path in [Path(f"characters/{character}.{extension}") for extension in ['png', 'jpg', 'jpeg']]:
 
 
 
 
 
 
70
  if path.exists():
71
+ image_html = f'<img src="file/{get_image_cache(path)}">'
72
+ break
 
 
 
73
 
74
  container_html += f'{image_html} <span class="character-name">{character}</span>'
75
  container_html += "</div>"
76
+ cards.append([container_html, character])
77
+
78
+ return cards
79
+
80
+
81
+ def select_character(evt: gr.SelectData):
82
+ return (evt.value[1])
83
 
 
 
84
 
85
  def ui():
86
+ with gr.Accordion("Character gallery", open=False):
87
  update = gr.Button("Refresh")
88
+ gr.HTML(value="<style>" + generate_css() + "</style>")
89
+ gallery = gr.Dataset(components=[gr.HTML(visible=False)],
90
+ label="",
91
+ samples=generate_html(),
92
+ elem_classes=["character-gallery"],
93
+ samples_per_page=50
94
+ )
95
  update.click(generate_html, [], gallery)
96
+ gallery.select(select_character, None, gradio['character_menu'])
extensions/google_translate/script.py CHANGED
@@ -7,14 +7,16 @@ params = {
7
 
8
  language_codes = {'Afrikaans': 'af', 'Albanian': 'sq', 'Amharic': 'am', 'Arabic': 'ar', 'Armenian': 'hy', 'Azerbaijani': 'az', 'Basque': 'eu', 'Belarusian': 'be', 'Bengali': 'bn', 'Bosnian': 'bs', 'Bulgarian': 'bg', 'Catalan': 'ca', 'Cebuano': 'ceb', 'Chinese (Simplified)': 'zh-CN', 'Chinese (Traditional)': 'zh-TW', 'Corsican': 'co', 'Croatian': 'hr', 'Czech': 'cs', 'Danish': 'da', 'Dutch': 'nl', 'English': 'en', 'Esperanto': 'eo', 'Estonian': 'et', 'Finnish': 'fi', 'French': 'fr', 'Frisian': 'fy', 'Galician': 'gl', 'Georgian': 'ka', 'German': 'de', 'Greek': 'el', 'Gujarati': 'gu', 'Haitian Creole': 'ht', 'Hausa': 'ha', 'Hawaiian': 'haw', 'Hebrew': 'iw', 'Hindi': 'hi', 'Hmong': 'hmn', 'Hungarian': 'hu', 'Icelandic': 'is', 'Igbo': 'ig', 'Indonesian': 'id', 'Irish': 'ga', 'Italian': 'it', 'Japanese': 'ja', 'Javanese': 'jw', 'Kannada': 'kn', 'Kazakh': 'kk', 'Khmer': 'km', 'Korean': 'ko', 'Kurdish': 'ku', 'Kyrgyz': 'ky', 'Lao': 'lo', 'Latin': 'la', 'Latvian': 'lv', 'Lithuanian': 'lt', 'Luxembourgish': 'lb', 'Macedonian': 'mk', 'Malagasy': 'mg', 'Malay': 'ms', 'Malayalam': 'ml', 'Maltese': 'mt', 'Maori': 'mi', 'Marathi': 'mr', 'Mongolian': 'mn', 'Myanmar (Burmese)': 'my', 'Nepali': 'ne', 'Norwegian': 'no', 'Nyanja (Chichewa)': 'ny', 'Pashto': 'ps', 'Persian': 'fa', 'Polish': 'pl', 'Portuguese (Portugal, Brazil)': 'pt', 'Punjabi': 'pa', 'Romanian': 'ro', 'Russian': 'ru', 'Samoan': 'sm', 'Scots Gaelic': 'gd', 'Serbian': 'sr', 'Sesotho': 'st', 'Shona': 'sn', 'Sindhi': 'sd', 'Sinhala (Sinhalese)': 'si', 'Slovak': 'sk', 'Slovenian': 'sl', 'Somali': 'so', 'Spanish': 'es', 'Sundanese': 'su', 'Swahili': 'sw', 'Swedish': 'sv', 'Tagalog (Filipino)': 'tl', 'Tajik': 'tg', 'Tamil': 'ta', 'Telugu': 'te', 'Thai': 'th', 'Turkish': 'tr', 'Ukrainian': 'uk', 'Urdu': 'ur', 'Uzbek': 'uz', 'Vietnamese': 'vi', 'Welsh': 'cy', 'Xhosa': 'xh', 'Yiddish': 'yi', 'Yoruba': 'yo', 'Zulu': 'zu'}
9
 
 
10
  def input_modifier(string):
11
  """
12
  This function is applied to your text inputs before
13
  they are fed into the model.
14
- """
15
 
16
  return GoogleTranslator(source=params['language string'], target='en').translate(string)
17
 
 
18
  def output_modifier(string):
19
  """
20
  This function is applied to the model outputs.
@@ -22,6 +24,7 @@ def output_modifier(string):
22
 
23
  return GoogleTranslator(source='en', target=params['language string']).translate(string)
24
 
 
25
  def bot_prefix_modifier(string):
26
  """
27
  This function is only applied in chat mode. It modifies
@@ -31,6 +34,7 @@ def bot_prefix_modifier(string):
31
 
32
  return string
33
 
 
34
  def ui():
35
  # Finding the language name from the language code to use as the default value
36
  language_name = list(language_codes.keys())[list(language_codes.values()).index(params['language string'])]
 
7
 
8
  language_codes = {'Afrikaans': 'af', 'Albanian': 'sq', 'Amharic': 'am', 'Arabic': 'ar', 'Armenian': 'hy', 'Azerbaijani': 'az', 'Basque': 'eu', 'Belarusian': 'be', 'Bengali': 'bn', 'Bosnian': 'bs', 'Bulgarian': 'bg', 'Catalan': 'ca', 'Cebuano': 'ceb', 'Chinese (Simplified)': 'zh-CN', 'Chinese (Traditional)': 'zh-TW', 'Corsican': 'co', 'Croatian': 'hr', 'Czech': 'cs', 'Danish': 'da', 'Dutch': 'nl', 'English': 'en', 'Esperanto': 'eo', 'Estonian': 'et', 'Finnish': 'fi', 'French': 'fr', 'Frisian': 'fy', 'Galician': 'gl', 'Georgian': 'ka', 'German': 'de', 'Greek': 'el', 'Gujarati': 'gu', 'Haitian Creole': 'ht', 'Hausa': 'ha', 'Hawaiian': 'haw', 'Hebrew': 'iw', 'Hindi': 'hi', 'Hmong': 'hmn', 'Hungarian': 'hu', 'Icelandic': 'is', 'Igbo': 'ig', 'Indonesian': 'id', 'Irish': 'ga', 'Italian': 'it', 'Japanese': 'ja', 'Javanese': 'jw', 'Kannada': 'kn', 'Kazakh': 'kk', 'Khmer': 'km', 'Korean': 'ko', 'Kurdish': 'ku', 'Kyrgyz': 'ky', 'Lao': 'lo', 'Latin': 'la', 'Latvian': 'lv', 'Lithuanian': 'lt', 'Luxembourgish': 'lb', 'Macedonian': 'mk', 'Malagasy': 'mg', 'Malay': 'ms', 'Malayalam': 'ml', 'Maltese': 'mt', 'Maori': 'mi', 'Marathi': 'mr', 'Mongolian': 'mn', 'Myanmar (Burmese)': 'my', 'Nepali': 'ne', 'Norwegian': 'no', 'Nyanja (Chichewa)': 'ny', 'Pashto': 'ps', 'Persian': 'fa', 'Polish': 'pl', 'Portuguese (Portugal, Brazil)': 'pt', 'Punjabi': 'pa', 'Romanian': 'ro', 'Russian': 'ru', 'Samoan': 'sm', 'Scots Gaelic': 'gd', 'Serbian': 'sr', 'Sesotho': 'st', 'Shona': 'sn', 'Sindhi': 'sd', 'Sinhala (Sinhalese)': 'si', 'Slovak': 'sk', 'Slovenian': 'sl', 'Somali': 'so', 'Spanish': 'es', 'Sundanese': 'su', 'Swahili': 'sw', 'Swedish': 'sv', 'Tagalog (Filipino)': 'tl', 'Tajik': 'tg', 'Tamil': 'ta', 'Telugu': 'te', 'Thai': 'th', 'Turkish': 'tr', 'Ukrainian': 'uk', 'Urdu': 'ur', 'Uzbek': 'uz', 'Vietnamese': 'vi', 'Welsh': 'cy', 'Xhosa': 'xh', 'Yiddish': 'yi', 'Yoruba': 'yo', 'Zulu': 'zu'}
9
 
10
+
11
  def input_modifier(string):
12
  """
13
  This function is applied to your text inputs before
14
  they are fed into the model.
15
+ """
16
 
17
  return GoogleTranslator(source=params['language string'], target='en').translate(string)
18
 
19
+
20
  def output_modifier(string):
21
  """
22
  This function is applied to the model outputs.
 
24
 
25
  return GoogleTranslator(source='en', target=params['language string']).translate(string)
26
 
27
+
28
  def bot_prefix_modifier(string):
29
  """
30
  This function is only applied in chat mode. It modifies
 
34
 
35
  return string
36
 
37
+
38
  def ui():
39
  # Finding the language name from the language code to use as the default value
40
  language_name = list(language_codes.keys())[list(language_codes.values()).index(params['language string'])]
extensions/llama_prompts/script.py DELETED
@@ -1,18 +0,0 @@
1
- import gradio as gr
2
- import modules.shared as shared
3
- import pandas as pd
4
-
5
- df = pd.read_csv("https://raw.githubusercontent.com/devbrones/llama-prompts/main/prompts/prompts.csv")
6
-
7
- def get_prompt_by_name(name):
8
- if name == 'None':
9
- return ''
10
- else:
11
- return df[df['Prompt name'] == name].iloc[0]['Prompt'].replace('\\n', '\n')
12
-
13
- def ui():
14
- if not shared.args.chat or shared.args.cai_chat:
15
- choices = ['None'] + list(df['Prompt name'])
16
-
17
- prompts_menu = gr.Dropdown(value=choices[0], choices=choices, label='Prompt')
18
- prompts_menu.change(get_prompt_by_name, prompts_menu, shared.gradio['textbox'])