"""Groq Chat wrapper.""" from __future__ import annotations import json import os import warnings from operator import itemgetter from typing import ( Any, AsyncIterator, Callable, Dict, Iterator, List, Literal, Mapping, Optional, Sequence, Tuple, Type, TypedDict, Union, cast, ) from langchain_core.callbacks import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain_core.language_models import LanguageModelInput from langchain_core.language_models.chat_models import ( BaseChatModel, LangSmithParams, agenerate_from_stream, generate_from_stream, ) from langchain_core.messages import ( AIMessage, AIMessageChunk, BaseMessage, BaseMessageChunk, ChatMessage, ChatMessageChunk, FunctionMessage, FunctionMessageChunk, HumanMessage, HumanMessageChunk, InvalidToolCall, SystemMessage, SystemMessageChunk, ToolCall, ToolMessage, ToolMessageChunk, ) from langchain_core.output_parsers import ( JsonOutputParser, PydanticOutputParser, ) from langchain_core.output_parsers.base import OutputParserLike from langchain_core.output_parsers.openai_tools import ( JsonOutputKeyToolsParser, PydanticToolsParser, make_invalid_tool_call, parse_tool_call, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough from langchain_core.tools import BaseTool from langchain_core.utils import ( convert_to_secret_str, get_from_dict_or_env, get_pydantic_field_names, ) from langchain_core.utils.function_calling import ( convert_to_openai_function, convert_to_openai_tool, ) class ChatGroq(BaseChatModel): """`Groq` Chat large language models API. To use, you should have the environment variable ``GROQ_API_KEY`` set with your API key. Any parameters that are valid to be passed to the groq.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain_groq import ChatGroq model = ChatGroq(model_name="mixtral-8x7b-32768") """ client: Any = Field(default=None, exclude=True) #: :meta private: async_client: Any = Field(default=None, exclude=True) #: :meta private: model_name: str = Field(default="mixtral-8x7b-32768", alias="model") """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" groq_api_key: Optional[SecretStr] = Field(default=None, alias="api_key") """Automatically inferred from env var `groq_API_KEY` if not provided.""" groq_api_base: Optional[str] = Field(default=None, alias="base_url") """Base URL path for API requests, leave blank if not using a proxy or service emulator.""" # to support explicit proxy for Groq groq_proxy: Optional[str] = None request_timeout: Union[float, Tuple[float, float], Any, None] = Field( default=None, alias="timeout" ) """Timeout for requests to Groq completion API. Can be float, httpx.Timeout or None.""" max_retries: int = 2 """Maximum number of retries to make when generating.""" streaming: bool = False """Whether to stream the results or not.""" n: int = 1 """Number of chat completions to generate for each prompt.""" max_tokens: Optional[int] = None """Maximum number of tokens to generate.""" stop: Optional[List[str]] = Field(None, alias="stop_sequences") """Default stop sequences.""" default_headers: Union[Mapping[str, str], None] = None default_query: Union[Mapping[str, object], None] = None # Configure a custom httpx client. See the # [httpx documentation](https://www.python-httpx.org/api/#client) for more details. http_client: Union[Any, None] = None """Optional httpx.Client.""" http_async_client: Union[Any, None] = None """Optional httpx.AsyncClient. Only used for async invocations. Must specify http_client as well if you'd like a custom client for sync invocations.""" class Config: """Configuration for this pydantic object.""" allow_population_by_field_name = True @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") if field_name not in all_required_field_names: warnings.warn( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs: raise ValueError( f"Parameters {invalid_model_kwargs} should be specified explicitly. " f"Instead they were passed in as part of `model_kwargs` parameter." ) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" if values["n"] < 1: raise ValueError("n must be at least 1.") if values["n"] > 1 and values["streaming"]: raise ValueError("n must be 1 when streaming.") if values["temperature"] == 0: values["temperature"] = 1e-8 values["groq_api_key"] = convert_to_secret_str( get_from_dict_or_env(values, "groq_api_key", "GROQ_API_KEY") ) values["groq_api_base"] = values["groq_api_base"] or os.getenv("GROQ_API_BASE") values["groq_proxy"] = values["groq_proxy"] = os.getenv("GROQ_PROXY") client_params = { "api_key": values["groq_api_key"].get_secret_value(), "base_url": values["groq_api_base"], "timeout": values["request_timeout"], "max_retries": values["max_retries"], "default_headers": values["default_headers"], "default_query": values["default_query"], } try: import groq sync_specific = {"http_client": values["http_client"]} if not values.get("client"): values["client"] = groq.Groq( **client_params, **sync_specific ).chat.completions if not values.get("async_client"): async_specific = {"http_client": values["http_async_client"]} values["async_client"] = groq.AsyncGroq( **client_params, **async_specific ).chat.completions except ImportError: raise ImportError( "Could not import groq python package. " "Please install it with `pip install groq`." ) return values # # Serializable class method overrides # @property def lc_secrets(self) -> Dict[str, str]: return {"groq_api_key": "GROQ_API_KEY"} @classmethod def is_lc_serializable(cls) -> bool: """Return whether this model can be serialized by Langchain.""" return True # # BaseChatModel method overrides # @property def _llm_type(self) -> str: """Return type of model.""" return "groq-chat" def _get_ls_params( self, stop: Optional[List[str]] = None, **kwargs: Any ) -> LangSmithParams: """Get standard params for tracing.""" params = self._get_invocation_params(stop=stop, **kwargs) ls_params = LangSmithParams( ls_provider="groq", ls_model_name=self.model_name, ls_model_type="chat", ls_temperature=params.get("temperature", self.temperature), ) if ls_max_tokens := params.get("max_tokens", self.max_tokens): ls_params["ls_max_tokens"] = ls_max_tokens if ls_stop := stop or params.get("stop", None) or self.stop: ls_params["ls_stop"] = ls_stop return ls_params def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: if self.streaming: stream_iter = self._stream( messages, stop=stop, run_manager=run_manager, **kwargs ) return generate_from_stream(stream_iter) message_dicts, params = self._create_message_dicts(messages, stop) params = { **params, **kwargs, } response = self.client.create(messages=message_dicts, **params) return self._create_chat_result(response) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: if self.streaming: stream_iter = self._astream( messages, stop=stop, run_manager=run_manager, **kwargs ) return await agenerate_from_stream(stream_iter) message_dicts, params = self._create_message_dicts(messages, stop) params = { **params, **kwargs, } response = await self.async_client.create(messages=message_dicts, **params) return self._create_chat_result(response) def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: message_dicts, params = self._create_message_dicts(messages, stop) # groq api does not support streaming with tools yet if "tools" in kwargs: response = self.client.create( messages=message_dicts, **{**params, **kwargs} ) chat_result = self._create_chat_result(response) generation = chat_result.generations[0] message = generation.message tool_call_chunks = [ { "name": rtc["function"].get("name"), "args": rtc["function"].get("arguments"), "id": rtc.get("id"), "index": rtc.get("index"), } for rtc in message.additional_kwargs.get("tool_calls", []) ] chunk_ = ChatGenerationChunk( message=AIMessageChunk( content=message.content, additional_kwargs=message.additional_kwargs, tool_call_chunks=tool_call_chunks, ), generation_info=generation.generation_info, ) if run_manager: geninfo = chunk_.generation_info or {} run_manager.on_llm_new_token( chunk_.text, chunk=chunk_, logprobs=geninfo.get("logprobs"), ) yield chunk_ return params = {**params, **kwargs, "stream": True} default_chunk_class = AIMessageChunk for chunk in self.client.create(messages=message_dicts, **params): if not isinstance(chunk, dict): chunk = chunk.dict() if len(chunk["choices"]) == 0: continue choice = chunk["choices"][0] chunk = _convert_delta_to_message_chunk( choice["delta"], default_chunk_class ) generation_info = {} if finish_reason := choice.get("finish_reason"): generation_info["finish_reason"] = finish_reason logprobs = choice.get("logprobs") if logprobs: generation_info["logprobs"] = logprobs default_chunk_class = chunk.__class__ chunk = ChatGenerationChunk( message=chunk, generation_info=generation_info or None ) if run_manager: run_manager.on_llm_new_token(chunk.text, chunk=chunk, logprobs=logprobs) yield chunk async def _astream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[ChatGenerationChunk]: message_dicts, params = self._create_message_dicts(messages, stop) # groq api does not support streaming with tools yet if "tools" in kwargs: response = await self.async_client.create( messages=message_dicts, **{**params, **kwargs} ) chat_result = self._create_chat_result(response) generation = chat_result.generations[0] message = generation.message tool_call_chunks = [ { "name": rtc["function"].get("name"), "args": rtc["function"].get("arguments"), "id": rtc.get("id"), "index": rtc.get("index"), } for rtc in message.additional_kwargs.get("tool_calls", []) ] chunk_ = ChatGenerationChunk( message=AIMessageChunk( content=message.content, additional_kwargs=message.additional_kwargs, tool_call_chunks=tool_call_chunks, ), generation_info=generation.generation_info, ) if run_manager: geninfo = chunk_.generation_info or {} await run_manager.on_llm_new_token( chunk_.text, chunk=chunk_, logprobs=geninfo.get("logprobs"), ) yield chunk_ return params = {**params, **kwargs, "stream": True} default_chunk_class = AIMessageChunk async for chunk in await self.async_client.create( messages=message_dicts, **params ): if not isinstance(chunk, dict): chunk = chunk.dict() if len(chunk["choices"]) == 0: continue choice = chunk["choices"][0] chunk = _convert_delta_to_message_chunk( choice["delta"], default_chunk_class ) generation_info = {} if finish_reason := choice.get("finish_reason"): generation_info["finish_reason"] = finish_reason logprobs = choice.get("logprobs") if logprobs: generation_info["logprobs"] = logprobs default_chunk_class = chunk.__class__ chunk = ChatGenerationChunk( message=chunk, generation_info=generation_info or None ) if run_manager: await run_manager.on_llm_new_token( token=chunk.text, chunk=chunk, logprobs=logprobs ) yield chunk # # Internal methods # @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Groq API.""" params = { "model": self.model_name, "stream": self.streaming, "n": self.n, "temperature": self.temperature, "stop": self.stop, **self.model_kwargs, } if self.max_tokens is not None: params["max_tokens"] = self.max_tokens return params def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult: generations = [] if not isinstance(response, dict): response = response.dict() for res in response["choices"]: message = _convert_dict_to_message(res["message"]) generation_info = dict(finish_reason=res.get("finish_reason")) if "logprobs" in res: generation_info["logprobs"] = res["logprobs"] gen = ChatGeneration( message=message, generation_info=generation_info, ) generations.append(gen) token_usage = response.get("usage", {}) llm_output = { "token_usage": token_usage, "model_name": self.model_name, "system_fingerprint": response.get("system_fingerprint", ""), } return ChatResult(generations=generations, llm_output=llm_output) def _create_message_dicts( self, messages: List[BaseMessage], stop: Optional[List[str]] ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: params = self._default_params if stop is not None: params["stop"] = stop message_dicts = [_convert_message_to_dict(m) for m in messages] return message_dicts, params def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: overall_token_usage: dict = {} system_fingerprint = None for output in llm_outputs: if output is None: # Happens in streaming continue token_usage = output["token_usage"] if token_usage is not None: for k, v in token_usage.items(): if k in overall_token_usage and v is not None: overall_token_usage[k] += v else: overall_token_usage[k] = v if system_fingerprint is None: system_fingerprint = output.get("system_fingerprint") combined = {"token_usage": overall_token_usage, "model_name": self.model_name} if system_fingerprint: combined["system_fingerprint"] = system_fingerprint return combined def bind_functions( self, functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]], function_call: Optional[ Union[_FunctionCall, str, Literal["auto", "none"]] ] = None, **kwargs: Any, ) -> Runnable[LanguageModelInput, BaseMessage]: """Bind functions (and other objects) to this chat model. Model is compatible with OpenAI function-calling API. NOTE: Using bind_tools is recommended instead, as the `functions` and `function_call` request parameters are officially deprecated. Args: functions: A list of function definitions to bind to this chat model. Can be a dictionary, pydantic model, or callable. Pydantic models and callables will be automatically converted to their schema dictionary representation. function_call: Which function to require the model to call. Must be the name of the single provided function or "auto" to automatically determine which function to call (if any). **kwargs: Any additional parameters to pass to the :class:`~langchain.runnable.Runnable` constructor. """ formatted_functions = [convert_to_openai_function(fn) for fn in functions] if function_call is not None: function_call = ( {"name": function_call} if isinstance(function_call, str) and function_call not in ("auto", "none") else function_call ) if isinstance(function_call, dict) and len(formatted_functions) != 1: raise ValueError( "When specifying `function_call`, you must provide exactly one " "function." ) if ( isinstance(function_call, dict) and formatted_functions[0]["name"] != function_call["name"] ): raise ValueError( f"Function call {function_call} was specified, but the only " f"provided function was {formatted_functions[0]['name']}." ) kwargs = {**kwargs, "function_call": function_call} return super().bind( functions=formatted_functions, **kwargs, ) def bind_tools( self, tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]], *, tool_choice: Optional[ Union[dict, str, Literal["auto", "any", "none"], bool] ] = None, **kwargs: Any, ) -> Runnable[LanguageModelInput, BaseMessage]: """Bind tool-like objects to this chat model. Args: tools: A list of tool definitions to bind to this chat model. Can be a dictionary, pydantic model, callable, or BaseTool. Pydantic models, callables, and BaseTools will be automatically converted to their schema dictionary representation. tool_choice: Which tool to require the model to call. Must be the name of the single provided function, "auto" to automatically determine which function to call with the option to not call any function, "any" to enforce that some function is called, or a dict of the form: {"type": "function", "function": {"name": <>}}. **kwargs: Any additional parameters to pass to the :class:`~langchain.runnable.Runnable` constructor. """ formatted_tools = [convert_to_openai_tool(tool) for tool in tools] if tool_choice is not None and tool_choice: if isinstance(tool_choice, str) and ( tool_choice not in ("auto", "any", "none") ): tool_choice = {"type": "function", "function": {"name": tool_choice}} if isinstance(tool_choice, dict) and (len(formatted_tools) != 1): raise ValueError( "When specifying `tool_choice`, you must provide exactly one " f"tool. Received {len(formatted_tools)} tools." ) if isinstance(tool_choice, dict) and ( formatted_tools[0]["function"]["name"] != tool_choice["function"]["name"] ): raise ValueError( f"Tool choice {tool_choice} was specified, but the only " f"provided tool was {formatted_tools[0]['function']['name']}." ) if isinstance(tool_choice, bool): if len(tools) > 1: raise ValueError( "tool_choice can only be True when there is one tool. Received " f"{len(tools)} tools." ) tool_name = formatted_tools[0]["function"]["name"] tool_choice = { "type": "function", "function": {"name": tool_name}, } kwargs["tool_choice"] = tool_choice return super().bind(tools=formatted_tools, **kwargs) def with_structured_output( self, schema: Optional[Union[Dict, Type[BaseModel]]] = None, *, method: Literal["function_calling", "json_mode"] = "function_calling", include_raw: bool = False, **kwargs: Any, ) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]: """Model wrapper that returns outputs formatted to match the given schema. Args: schema: The output schema as a dict or a Pydantic class. If a Pydantic class then the model output will be an object of that class. If a dict then the model output will be a dict. With a Pydantic class the returned attributes will be validated, whereas with a dict they will not be. If `method` is "function_calling" and `schema` is a dict, then the dict must match the OpenAI function-calling spec. method: The method for steering model generation, either "function_calling" or "json_mode". If "function_calling" then the schema will be converted to a OpenAI function and the returned model will make use of the function-calling API. If "json_mode" then Groq's JSON mode will be used. Note that if using "json_mode" then you must include instructions for formatting the output into the desired schema into the model call. include_raw: If False then only the parsed structured output is returned. If an error occurs during model output parsing it will be raised. If True then both the raw model response (a BaseMessage) and the parsed model response will be returned. If an error occurs during output parsing it will be caught and returned as well. The final output is always a dict with keys "raw", "parsed", and "parsing_error". Returns: A Runnable that takes any ChatModel input and returns as output: If include_raw is True then a dict with keys: raw: BaseMessage parsed: Optional[_DictOrPydantic] parsing_error: Optional[BaseException] If include_raw is False then just _DictOrPydantic is returned, where _DictOrPydantic depends on the schema: If schema is a Pydantic class then _DictOrPydantic is the Pydantic class. If schema is a dict then _DictOrPydantic is a dict. Example: Function-calling, Pydantic schema (method="function_calling", include_raw=False): .. code-block:: python from langchain_groq import ChatGroq from langchain_core.pydantic_v1 import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str llm = ChatGroq(temperature=0) structured_llm = llm.with_structured_output(AnswerWithJustification) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> AnswerWithJustification( # answer='A pound of bricks and a pound of feathers weigh the same.' # justification="Both a pound of bricks and a pound of feathers have been defined to have the same weight. The 'pound' is a unit of weight, so any two things that are described as weighing a pound will weigh the same." # ) Example: Function-calling, Pydantic schema (method="function_calling", include_raw=True): .. code-block:: python from langchain_groq import ChatGroq from langchain_core.pydantic_v1 import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str llm = ChatGroq(temperature=0) structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> { # 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_01htjn3cspevxbqc1d7nkk8wab', 'function': {'arguments': '{"answer": "A pound of bricks and a pound of feathers weigh the same.", "justification": "Both a pound of bricks and a pound of feathers have been defined to have the same weight. The \'pound\' is a unit of weight, so any two things that are described as weighing a pound will weigh the same.", "unit": "pounds"}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}, id='run-456beee6-65f6-4e80-88af-a6065480822c-0'), # 'parsed': AnswerWithJustification(answer='A pound of bricks and a pound of feathers weigh the same.', justification="Both a pound of bricks and a pound of feathers have been defined to have the same weight. The 'pound' is a unit of weight, so any two things that are described as weighing a pound will weigh the same."), # 'parsing_error': None # } Example: Function-calling, dict schema (method="function_calling", include_raw=False): .. code-block:: python from langchain_groq import ChatGroq from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils.function_calling import convert_to_openai_tool class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str dict_schema = convert_to_openai_tool(AnswerWithJustification) llm = ChatGroq(temperature=0) structured_llm = llm.with_structured_output(dict_schema) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> { # 'answer': 'A pound of bricks and a pound of feathers weigh the same.', # 'justification': "Both a pound of bricks and a pound of feathers have been defined to have the same weight. The 'pound' is a unit of weight, so any two things that are described as weighing a pound will weigh the same.", 'unit': 'pounds'} # } Example: JSON mode, Pydantic schema (method="json_mode", include_raw=True): .. code-block:: from langchain_groq import ChatGroq from langchain_core.pydantic_v1 import BaseModel class AnswerWithJustification(BaseModel): answer: str justification: str llm = ChatGroq(temperature=0) structured_llm = llm.with_structured_output( AnswerWithJustification, method="json_mode", include_raw=True ) structured_llm.invoke( "Answer the following question. " "Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n" "What's heavier a pound of bricks or a pound of feathers?" ) # -> { # 'raw': AIMessage(content='{\n "answer": "A pound of bricks is the same weight as a pound of feathers.",\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The material being weighed does not affect the weight, only the volume or number of items being weighed."\n}', id='run-e5453bc5-5025-4833-95f9-4967bf6d5c4f-0'), # 'parsed': AnswerWithJustification(answer='A pound of bricks is the same weight as a pound of feathers.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The material being weighed does not affect the weight, only the volume or number of items being weighed.'), # 'parsing_error': None # } Example: JSON mode, no schema (schema=None, method="json_mode", include_raw=True): .. code-block:: from langchain_groq import ChatGroq llm = ChatGroq(temperature=0) structured_llm = llm.with_structured_output(method="json_mode", include_raw=True) structured_llm.invoke( "Answer the following question. " "Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n" "What's heavier a pound of bricks or a pound of feathers?" ) # -> { # 'raw': AIMessage(content='{\n "answer": "A pound of bricks is the same weight as a pound of feathers.",\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The material doesn\'t change the weight, only the volume or space that the material takes up."\n}', id='run-a4abbdb6-c20e-456f-bfff-da906a7e76b5-0'), # 'parsed': { # 'answer': 'A pound of bricks is the same weight as a pound of feathers.', # 'justification': "Both a pound of bricks and a pound of feathers weigh one pound. The material doesn't change the weight, only the volume or space that the material takes up."}, # 'parsing_error': None # } """ # noqa: E501 if kwargs: raise ValueError(f"Received unsupported arguments {kwargs}") is_pydantic_schema = _is_pydantic_class(schema) if method == "function_calling": if schema is None: raise ValueError( "schema must be specified when method is 'function_calling'. " "Received None." ) llm = self.bind_tools([schema], tool_choice=True) if is_pydantic_schema: output_parser: OutputParserLike = PydanticToolsParser( tools=[schema], first_tool_only=True ) else: key_name = convert_to_openai_tool(schema)["function"]["name"] output_parser = JsonOutputKeyToolsParser( key_name=key_name, first_tool_only=True ) elif method == "json_mode": llm = self.bind(response_format={"type": "json_object"}) output_parser = ( PydanticOutputParser(pydantic_object=schema) if is_pydantic_schema else JsonOutputParser() ) else: raise ValueError( f"Unrecognized method argument. Expected one of 'function_calling' or " f"'json_format'. Received: '{method}'" ) if include_raw: parser_assign = RunnablePassthrough.assign( parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None ) parser_none = RunnablePassthrough.assign(parsed=lambda _: None) parser_with_fallback = parser_assign.with_fallbacks( [parser_none], exception_key="parsing_error" ) return RunnableMap(raw=llm) | parser_with_fallback else: return llm | output_parser def _is_pydantic_class(obj: Any) -> bool: return isinstance(obj, type) and issubclass(obj, BaseModel) class _FunctionCall(TypedDict): name: str # # Type conversion helpers # def _convert_message_to_dict(message: BaseMessage) -> dict: """Convert a LangChain message to a dictionary. Args: message: The LangChain message. Returns: The dictionary. """ message_dict: Dict[str, Any] if isinstance(message, ChatMessage): message_dict = {"role": message.role, "content": message.content} elif isinstance(message, HumanMessage): message_dict = {"role": "user", "content": message.content} elif isinstance(message, AIMessage): message_dict = {"role": "assistant", "content": message.content} if "function_call" in message.additional_kwargs: message_dict["function_call"] = message.additional_kwargs["function_call"] # If function call only, content is None not empty string if message_dict["content"] == "": message_dict["content"] = None if message.tool_calls or message.invalid_tool_calls: message_dict["tool_calls"] = [ _lc_tool_call_to_groq_tool_call(tc) for tc in message.tool_calls ] + [ _lc_invalid_tool_call_to_groq_tool_call(tc) for tc in message.invalid_tool_calls ] elif "tool_calls" in message.additional_kwargs: message_dict["tool_calls"] = message.additional_kwargs["tool_calls"] # If tool calls only, content is None not empty string if message_dict["content"] == "": message_dict["content"] = None elif isinstance(message, SystemMessage): message_dict = {"role": "system", "content": message.content} elif isinstance(message, FunctionMessage): message_dict = { "role": "function", "content": message.content, "name": message.name, } elif isinstance(message, ToolMessage): message_dict = { "role": "tool", "content": message.content, "tool_call_id": message.tool_call_id, } else: raise TypeError(f"Got unknown type {message}") if "name" in message.additional_kwargs: message_dict["name"] = message.additional_kwargs["name"] return message_dict def _convert_delta_to_message_chunk( _dict: Mapping[str, Any], default_class: Type[BaseMessageChunk] ) -> BaseMessageChunk: role = cast(str, _dict.get("role")) content = cast(str, _dict.get("content") or "") additional_kwargs: Dict = {} if _dict.get("function_call"): function_call = dict(_dict["function_call"]) if "name" in function_call and function_call["name"] is None: function_call["name"] = "" additional_kwargs["function_call"] = function_call if _dict.get("tool_calls"): additional_kwargs["tool_calls"] = _dict["tool_calls"] if role == "user" or default_class == HumanMessageChunk: return HumanMessageChunk(content=content) elif role == "assistant" or default_class == AIMessageChunk: return AIMessageChunk(content=content, additional_kwargs=additional_kwargs) elif role == "system" or default_class == SystemMessageChunk: return SystemMessageChunk(content=content) elif role == "function" or default_class == FunctionMessageChunk: return FunctionMessageChunk(content=content, name=_dict["name"]) elif role == "tool" or default_class == ToolMessageChunk: return ToolMessageChunk(content=content, tool_call_id=_dict["tool_call_id"]) elif role or default_class == ChatMessageChunk: return ChatMessageChunk(content=content, role=role) else: return default_class(content=content) # type: ignore def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage: """Convert a dictionary to a LangChain message. Args: _dict: The dictionary. Returns: The LangChain message. """ id_ = _dict.get("id") role = _dict.get("role") if role == "user": return HumanMessage(content=_dict.get("content", "")) elif role == "assistant": content = _dict.get("content", "") or "" additional_kwargs: Dict = {} if function_call := _dict.get("function_call"): additional_kwargs["function_call"] = dict(function_call) tool_calls = [] invalid_tool_calls = [] if raw_tool_calls := _dict.get("tool_calls"): additional_kwargs["tool_calls"] = raw_tool_calls for raw_tool_call in raw_tool_calls: try: tool_calls.append(parse_tool_call(raw_tool_call, return_id=True)) except Exception as e: invalid_tool_calls.append( make_invalid_tool_call(raw_tool_call, str(e)) ) return AIMessage( content=content, id=id_, additional_kwargs=additional_kwargs, tool_calls=tool_calls, invalid_tool_calls=invalid_tool_calls, ) elif role == "system": return SystemMessage(content=_dict.get("content", "")) elif role == "function": return FunctionMessage(content=_dict.get("content", ""), name=_dict.get("name")) elif role == "tool": additional_kwargs = {} if "name" in _dict: additional_kwargs["name"] = _dict["name"] return ToolMessage( content=_dict.get("content", ""), tool_call_id=_dict.get("tool_call_id"), additional_kwargs=additional_kwargs, ) else: return ChatMessage(content=_dict.get("content", ""), role=role) def _lc_tool_call_to_groq_tool_call(tool_call: ToolCall) -> dict: return { "type": "function", "id": tool_call["id"], "function": { "name": tool_call["name"], "arguments": json.dumps(tool_call["args"]), }, } def _lc_invalid_tool_call_to_groq_tool_call( invalid_tool_call: InvalidToolCall, ) -> dict: return { "type": "function", "id": invalid_tool_call["id"], "function": { "name": invalid_tool_call["name"], "arguments": invalid_tool_call["args"], }, }