anpigon's picture
add langchain docs
ed4d993
from typing import List, Tuple
from langchain_community.chat_models import ChatOpenAI
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables import RunnablePassthrough
from presidio_analyzer import AnalyzerEngine
# Formatting for chat history
def _format_chat_history(chat_history: List[Tuple[str, str]]):
buffer = []
for human, ai in chat_history:
buffer.append(HumanMessage(content=human))
buffer.append(AIMessage(content=ai))
return buffer
# Prompt we will use
_prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant who speaks like a pirate",
),
MessagesPlaceholder(variable_name="chat_history"),
("human", "{text}"),
]
)
# Model we will use
_model = ChatOpenAI()
# Standard conversation chain.
chat_chain = (
{
"chat_history": lambda x: _format_chat_history(x["chat_history"]),
"text": lambda x: x["text"],
}
| _prompt
| _model
| StrOutputParser()
)
# PII Detection logic
analyzer = AnalyzerEngine()
# You can customize this to detect any PII
def _detect_pii(inputs: dict) -> bool:
analyzer_results = analyzer.analyze(text=inputs["text"], language="en")
return bool(analyzer_results)
# Add logic to route on whether PII has been detected
def _route_on_pii(inputs: dict):
if inputs["pii_detected"]:
# Response if PII is detected
return "Sorry, I can't answer questions that involve PII"
else:
return chat_chain
# Final chain
chain = RunnablePassthrough.assign(
# First detect PII
pii_detected=_detect_pii
) | {
# Then use this information to generate the response
"response": _route_on_pii,
# Return boolean of whether PII is detected so client can decided
# whether or not to include in chat history
"pii_detected": lambda x: x["pii_detected"],
}
# Add typing for playground
class ChainInput(BaseModel):
text: str
chat_history: List[Tuple[str, str]]
chain = chain.with_types(input_type=ChainInput)