Spaces:
Running
Running
from __future__ import annotations | |
import logging | |
import os | |
import sys | |
from typing import ( | |
AbstractSet, | |
Any, | |
AsyncIterator, | |
Collection, | |
Dict, | |
Iterator, | |
List, | |
Literal, | |
Mapping, | |
Optional, | |
Set, | |
Tuple, | |
Union, | |
) | |
import openai | |
import tiktoken | |
from langchain_core.callbacks import ( | |
AsyncCallbackManagerForLLMRun, | |
CallbackManagerForLLMRun, | |
) | |
from langchain_core.language_models.llms import BaseLLM | |
from langchain_core.outputs import Generation, GenerationChunk, LLMResult | |
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator | |
from langchain_core.utils import ( | |
convert_to_secret_str, | |
get_from_dict_or_env, | |
get_pydantic_field_names, | |
) | |
from langchain_core.utils.utils import build_extra_kwargs | |
logger = logging.getLogger(__name__) | |
def _update_token_usage( | |
keys: Set[str], response: Dict[str, Any], token_usage: Dict[str, Any] | |
) -> None: | |
"""Update token usage.""" | |
_keys_to_use = keys.intersection(response["usage"]) | |
for _key in _keys_to_use: | |
if _key not in token_usage: | |
token_usage[_key] = response["usage"][_key] | |
else: | |
token_usage[_key] += response["usage"][_key] | |
def _stream_response_to_generation_chunk( | |
stream_response: Dict[str, Any], | |
) -> GenerationChunk: | |
"""Convert a stream response to a generation chunk.""" | |
if not stream_response["choices"]: | |
return GenerationChunk(text="") | |
return GenerationChunk( | |
text=stream_response["choices"][0]["text"], | |
generation_info=dict( | |
finish_reason=stream_response["choices"][0].get("finish_reason", None), | |
logprobs=stream_response["choices"][0].get("logprobs", None), | |
), | |
) | |
class BaseOpenAI(BaseLLM): | |
"""Base OpenAI large language model class.""" | |
client: Any = Field(default=None, exclude=True) #: :meta private: | |
async_client: Any = Field(default=None, exclude=True) #: :meta private: | |
model_name: str = Field(default="gpt-3.5-turbo-instruct", alias="model") | |
"""Model name to use.""" | |
temperature: float = 0.7 | |
"""What sampling temperature to use.""" | |
max_tokens: int = 256 | |
"""The maximum number of tokens to generate in the completion. | |
-1 returns as many tokens as possible given the prompt and | |
the models maximal context size.""" | |
top_p: float = 1 | |
"""Total probability mass of tokens to consider at each step.""" | |
frequency_penalty: float = 0 | |
"""Penalizes repeated tokens according to frequency.""" | |
presence_penalty: float = 0 | |
"""Penalizes repeated tokens.""" | |
n: int = 1 | |
"""How many completions to generate for each prompt.""" | |
best_of: int = 1 | |
"""Generates best_of completions server-side and returns the "best".""" | |
model_kwargs: Dict[str, Any] = Field(default_factory=dict) | |
"""Holds any model parameters valid for `create` call not explicitly specified.""" | |
openai_api_key: Optional[SecretStr] = Field(default=None, alias="api_key") | |
"""Automatically inferred from env var `OPENAI_API_KEY` if not provided.""" | |
openai_api_base: Optional[str] = Field(default=None, alias="base_url") | |
"""Base URL path for API requests, leave blank if not using a proxy or service | |
emulator.""" | |
openai_organization: Optional[str] = Field(default=None, alias="organization") | |
"""Automatically inferred from env var `OPENAI_ORG_ID` if not provided.""" | |
# to support explicit proxy for OpenAI | |
openai_proxy: Optional[str] = None | |
batch_size: int = 20 | |
"""Batch size to use when passing multiple documents to generate.""" | |
request_timeout: Union[float, Tuple[float, float], Any, None] = Field( | |
default=None, alias="timeout" | |
) | |
"""Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout or | |
None.""" | |
logit_bias: Optional[Dict[str, float]] = Field(default_factory=dict) | |
"""Adjust the probability of specific tokens being generated.""" | |
max_retries: int = 2 | |
"""Maximum number of retries to make when generating.""" | |
streaming: bool = False | |
"""Whether to stream the results or not.""" | |
allowed_special: Union[Literal["all"], AbstractSet[str]] = set() | |
"""Set of special tokens that are allowed。""" | |
disallowed_special: Union[Literal["all"], Collection[str]] = "all" | |
"""Set of special tokens that are not allowed。""" | |
tiktoken_model_name: Optional[str] = None | |
"""The model name to pass to tiktoken when using this class. | |
Tiktoken is used to count the number of tokens in documents to constrain | |
them to be under a certain limit. By default, when set to None, this will | |
be the same as the embedding model name. However, there are some cases | |
where you may want to use this Embedding class with a model name not | |
supported by tiktoken. This can include when using Azure embeddings or | |
when using one of the many model providers that expose an OpenAI-like | |
API but with different models. In those cases, in order to avoid erroring | |
when tiktoken is called, you can specify a model name to use here.""" | |
default_headers: Union[Mapping[str, str], None] = None | |
default_query: Union[Mapping[str, object], None] = None | |
# Configure a custom httpx client. See the | |
# [httpx documentation](https://www.python-httpx.org/api/#client) for more details. | |
http_client: Union[Any, None] = None | |
"""Optional httpx.Client. Only used for sync invocations. Must specify | |
http_async_client as well if you'd like a custom client for async invocations. | |
""" | |
http_async_client: Union[Any, None] = None | |
"""Optional httpx.AsyncClient. Only used for async invocations. Must specify | |
http_client as well if you'd like a custom client for sync invocations.""" | |
class Config: | |
"""Configuration for this pydantic object.""" | |
allow_population_by_field_name = True | |
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: | |
"""Build extra kwargs from additional params that were passed in.""" | |
all_required_field_names = get_pydantic_field_names(cls) | |
extra = values.get("model_kwargs", {}) | |
values["model_kwargs"] = build_extra_kwargs( | |
extra, values, all_required_field_names | |
) | |
return values | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that api key and python package exists in environment.""" | |
if values["n"] < 1: | |
raise ValueError("n must be at least 1.") | |
if values["streaming"] and values["n"] > 1: | |
raise ValueError("Cannot stream results when n > 1.") | |
if values["streaming"] and values["best_of"] > 1: | |
raise ValueError("Cannot stream results when best_of > 1.") | |
openai_api_key = get_from_dict_or_env( | |
values, "openai_api_key", "OPENAI_API_KEY" | |
) | |
values["openai_api_key"] = ( | |
convert_to_secret_str(openai_api_key) if openai_api_key else None | |
) | |
values["openai_api_base"] = values["openai_api_base"] or os.getenv( | |
"OPENAI_API_BASE" | |
) | |
values["openai_proxy"] = get_from_dict_or_env( | |
values, | |
"openai_proxy", | |
"OPENAI_PROXY", | |
default="", | |
) | |
values["openai_organization"] = ( | |
values["openai_organization"] | |
or os.getenv("OPENAI_ORG_ID") | |
or os.getenv("OPENAI_ORGANIZATION") | |
) | |
client_params = { | |
"api_key": ( | |
values["openai_api_key"].get_secret_value() | |
if values["openai_api_key"] | |
else None | |
), | |
"organization": values["openai_organization"], | |
"base_url": values["openai_api_base"], | |
"timeout": values["request_timeout"], | |
"max_retries": values["max_retries"], | |
"default_headers": values["default_headers"], | |
"default_query": values["default_query"], | |
} | |
if not values.get("client"): | |
sync_specific = {"http_client": values["http_client"]} | |
values["client"] = openai.OpenAI( | |
**client_params, **sync_specific | |
).completions | |
if not values.get("async_client"): | |
async_specific = {"http_client": values["http_async_client"]} | |
values["async_client"] = openai.AsyncOpenAI( | |
**client_params, **async_specific | |
).completions | |
return values | |
def _default_params(self) -> Dict[str, Any]: | |
"""Get the default parameters for calling OpenAI API.""" | |
normal_params: Dict[str, Any] = { | |
"temperature": self.temperature, | |
"top_p": self.top_p, | |
"frequency_penalty": self.frequency_penalty, | |
"presence_penalty": self.presence_penalty, | |
"n": self.n, | |
"logit_bias": self.logit_bias, | |
} | |
if self.max_tokens is not None: | |
normal_params["max_tokens"] = self.max_tokens | |
# Azure gpt-35-turbo doesn't support best_of | |
# don't specify best_of if it is 1 | |
if self.best_of > 1: | |
normal_params["best_of"] = self.best_of | |
return {**normal_params, **self.model_kwargs} | |
def _stream( | |
self, | |
prompt: str, | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> Iterator[GenerationChunk]: | |
params = {**self._invocation_params, **kwargs, "stream": True} | |
self.get_sub_prompts(params, [prompt], stop) # this mutates params | |
for stream_resp in self.client.create(prompt=prompt, **params): | |
if not isinstance(stream_resp, dict): | |
stream_resp = stream_resp.model_dump() | |
chunk = _stream_response_to_generation_chunk(stream_resp) | |
if run_manager: | |
run_manager.on_llm_new_token( | |
chunk.text, | |
chunk=chunk, | |
verbose=self.verbose, | |
logprobs=( | |
chunk.generation_info["logprobs"] | |
if chunk.generation_info | |
else None | |
), | |
) | |
yield chunk | |
async def _astream( | |
self, | |
prompt: str, | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> AsyncIterator[GenerationChunk]: | |
params = {**self._invocation_params, **kwargs, "stream": True} | |
self.get_sub_prompts(params, [prompt], stop) # this mutates params | |
async for stream_resp in await self.async_client.create( | |
prompt=prompt, **params | |
): | |
if not isinstance(stream_resp, dict): | |
stream_resp = stream_resp.model_dump() | |
chunk = _stream_response_to_generation_chunk(stream_resp) | |
if run_manager: | |
await run_manager.on_llm_new_token( | |
chunk.text, | |
chunk=chunk, | |
verbose=self.verbose, | |
logprobs=( | |
chunk.generation_info["logprobs"] | |
if chunk.generation_info | |
else None | |
), | |
) | |
yield chunk | |
def _generate( | |
self, | |
prompts: List[str], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> LLMResult: | |
"""Call out to OpenAI's endpoint with k unique prompts. | |
Args: | |
prompts: The prompts to pass into the model. | |
stop: Optional list of stop words to use when generating. | |
Returns: | |
The full LLM output. | |
Example: | |
.. code-block:: python | |
response = openai.generate(["Tell me a joke."]) | |
""" | |
# TODO: write a unit test for this | |
params = self._invocation_params | |
params = {**params, **kwargs} | |
sub_prompts = self.get_sub_prompts(params, prompts, stop) | |
choices = [] | |
token_usage: Dict[str, int] = {} | |
# Get the token usage from the response. | |
# Includes prompt, completion, and total tokens used. | |
_keys = {"completion_tokens", "prompt_tokens", "total_tokens"} | |
system_fingerprint: Optional[str] = None | |
for _prompts in sub_prompts: | |
if self.streaming: | |
if len(_prompts) > 1: | |
raise ValueError("Cannot stream results with multiple prompts.") | |
generation: Optional[GenerationChunk] = None | |
for chunk in self._stream(_prompts[0], stop, run_manager, **kwargs): | |
if generation is None: | |
generation = chunk | |
else: | |
generation += chunk | |
assert generation is not None | |
choices.append( | |
{ | |
"text": generation.text, | |
"finish_reason": ( | |
generation.generation_info.get("finish_reason") | |
if generation.generation_info | |
else None | |
), | |
"logprobs": ( | |
generation.generation_info.get("logprobs") | |
if generation.generation_info | |
else None | |
), | |
} | |
) | |
else: | |
response = self.client.create(prompt=_prompts, **params) | |
if not isinstance(response, dict): | |
# V1 client returns the response in an PyDantic object instead of | |
# dict. For the transition period, we deep convert it to dict. | |
response = response.model_dump() | |
# Sometimes the AI Model calling will get error, we should raise it. | |
# Otherwise, the next code 'choices.extend(response["choices"])' | |
# will throw a "TypeError: 'NoneType' object is not iterable" error | |
# to mask the true error. Because 'response["choices"]' is None. | |
if response.get("error"): | |
raise ValueError(response.get("error")) | |
choices.extend(response["choices"]) | |
_update_token_usage(_keys, response, token_usage) | |
if not system_fingerprint: | |
system_fingerprint = response.get("system_fingerprint") | |
return self.create_llm_result( | |
choices, | |
prompts, | |
params, | |
token_usage, | |
system_fingerprint=system_fingerprint, | |
) | |
async def _agenerate( | |
self, | |
prompts: List[str], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> LLMResult: | |
"""Call out to OpenAI's endpoint async with k unique prompts.""" | |
params = self._invocation_params | |
params = {**params, **kwargs} | |
sub_prompts = self.get_sub_prompts(params, prompts, stop) | |
choices = [] | |
token_usage: Dict[str, int] = {} | |
# Get the token usage from the response. | |
# Includes prompt, completion, and total tokens used. | |
_keys = {"completion_tokens", "prompt_tokens", "total_tokens"} | |
system_fingerprint: Optional[str] = None | |
for _prompts in sub_prompts: | |
if self.streaming: | |
if len(_prompts) > 1: | |
raise ValueError("Cannot stream results with multiple prompts.") | |
generation: Optional[GenerationChunk] = None | |
async for chunk in self._astream( | |
_prompts[0], stop, run_manager, **kwargs | |
): | |
if generation is None: | |
generation = chunk | |
else: | |
generation += chunk | |
assert generation is not None | |
choices.append( | |
{ | |
"text": generation.text, | |
"finish_reason": ( | |
generation.generation_info.get("finish_reason") | |
if generation.generation_info | |
else None | |
), | |
"logprobs": ( | |
generation.generation_info.get("logprobs") | |
if generation.generation_info | |
else None | |
), | |
} | |
) | |
else: | |
response = await self.async_client.create(prompt=_prompts, **params) | |
if not isinstance(response, dict): | |
response = response.model_dump() | |
choices.extend(response["choices"]) | |
_update_token_usage(_keys, response, token_usage) | |
return self.create_llm_result( | |
choices, | |
prompts, | |
params, | |
token_usage, | |
system_fingerprint=system_fingerprint, | |
) | |
def get_sub_prompts( | |
self, | |
params: Dict[str, Any], | |
prompts: List[str], | |
stop: Optional[List[str]] = None, | |
) -> List[List[str]]: | |
"""Get the sub prompts for llm call.""" | |
if stop is not None: | |
if "stop" in params: | |
raise ValueError("`stop` found in both the input and default params.") | |
params["stop"] = stop | |
if params["max_tokens"] == -1: | |
if len(prompts) != 1: | |
raise ValueError( | |
"max_tokens set to -1 not supported for multiple inputs." | |
) | |
params["max_tokens"] = self.max_tokens_for_prompt(prompts[0]) | |
sub_prompts = [ | |
prompts[i : i + self.batch_size] | |
for i in range(0, len(prompts), self.batch_size) | |
] | |
return sub_prompts | |
def create_llm_result( | |
self, | |
choices: Any, | |
prompts: List[str], | |
params: Dict[str, Any], | |
token_usage: Dict[str, int], | |
*, | |
system_fingerprint: Optional[str] = None, | |
) -> LLMResult: | |
"""Create the LLMResult from the choices and prompts.""" | |
generations = [] | |
n = params.get("n", self.n) | |
for i, _ in enumerate(prompts): | |
sub_choices = choices[i * n : (i + 1) * n] | |
generations.append( | |
[ | |
Generation( | |
text=choice["text"], | |
generation_info=dict( | |
finish_reason=choice.get("finish_reason"), | |
logprobs=choice.get("logprobs"), | |
), | |
) | |
for choice in sub_choices | |
] | |
) | |
llm_output = {"token_usage": token_usage, "model_name": self.model_name} | |
if system_fingerprint: | |
llm_output["system_fingerprint"] = system_fingerprint | |
return LLMResult(generations=generations, llm_output=llm_output) | |
def _invocation_params(self) -> Dict[str, Any]: | |
"""Get the parameters used to invoke the model.""" | |
return self._default_params | |
def _identifying_params(self) -> Mapping[str, Any]: | |
"""Get the identifying parameters.""" | |
return {**{"model_name": self.model_name}, **self._default_params} | |
def _llm_type(self) -> str: | |
"""Return type of llm.""" | |
return "openai" | |
def get_token_ids(self, text: str) -> List[int]: | |
"""Get the token IDs using the tiktoken package.""" | |
if self.custom_get_token_ids is not None: | |
return self.custom_get_token_ids(text) | |
# tiktoken NOT supported for Python < 3.8 | |
if sys.version_info[1] < 8: | |
return super().get_num_tokens(text) | |
model_name = self.tiktoken_model_name or self.model_name | |
try: | |
enc = tiktoken.encoding_for_model(model_name) | |
except KeyError: | |
enc = tiktoken.get_encoding("cl100k_base") | |
return enc.encode( | |
text, | |
allowed_special=self.allowed_special, | |
disallowed_special=self.disallowed_special, | |
) | |
def modelname_to_contextsize(modelname: str) -> int: | |
"""Calculate the maximum number of tokens possible to generate for a model. | |
Args: | |
modelname: The modelname we want to know the context size for. | |
Returns: | |
The maximum context size | |
Example: | |
.. code-block:: python | |
max_tokens = openai.modelname_to_contextsize("gpt-3.5-turbo-instruct") | |
""" | |
model_token_mapping = { | |
"gpt-4o": 128_000, | |
"gpt-4o-2024-05-13": 128_000, | |
"gpt-4": 8192, | |
"gpt-4-0314": 8192, | |
"gpt-4-0613": 8192, | |
"gpt-4-32k": 32768, | |
"gpt-4-32k-0314": 32768, | |
"gpt-4-32k-0613": 32768, | |
"gpt-3.5-turbo": 4096, | |
"gpt-3.5-turbo-0301": 4096, | |
"gpt-3.5-turbo-0613": 4096, | |
"gpt-3.5-turbo-16k": 16385, | |
"gpt-3.5-turbo-16k-0613": 16385, | |
"gpt-3.5-turbo-instruct": 4096, | |
"text-ada-001": 2049, | |
"ada": 2049, | |
"text-babbage-001": 2040, | |
"babbage": 2049, | |
"text-curie-001": 2049, | |
"curie": 2049, | |
"davinci": 2049, | |
"text-davinci-003": 4097, | |
"text-davinci-002": 4097, | |
"code-davinci-002": 8001, | |
"code-davinci-001": 8001, | |
"code-cushman-002": 2048, | |
"code-cushman-001": 2048, | |
} | |
# handling finetuned models | |
if "ft-" in modelname: | |
modelname = modelname.split(":")[0] | |
context_size = model_token_mapping.get(modelname, None) | |
if context_size is None: | |
raise ValueError( | |
f"Unknown model: {modelname}. Please provide a valid OpenAI model name." | |
"Known models are: " + ", ".join(model_token_mapping.keys()) | |
) | |
return context_size | |
def max_context_size(self) -> int: | |
"""Get max context size for this model.""" | |
return self.modelname_to_contextsize(self.model_name) | |
def max_tokens_for_prompt(self, prompt: str) -> int: | |
"""Calculate the maximum number of tokens possible to generate for a prompt. | |
Args: | |
prompt: The prompt to pass into the model. | |
Returns: | |
The maximum number of tokens to generate for a prompt. | |
Example: | |
.. code-block:: python | |
max_tokens = openai.max_token_for_prompt("Tell me a joke.") | |
""" | |
num_tokens = self.get_num_tokens(prompt) | |
return self.max_context_size - num_tokens | |
class OpenAI(BaseOpenAI): | |
"""OpenAI large language models. | |
To use, you should have the environment variable ``OPENAI_API_KEY`` | |
set with your API key, or pass it as a named parameter to the constructor. | |
Any parameters that are valid to be passed to the openai.create call can be passed | |
in, even if not explicitly saved on this class. | |
Example: | |
.. code-block:: python | |
from langchain_openai import OpenAI | |
model = OpenAI(model_name="gpt-3.5-turbo-instruct") | |
""" | |
def get_lc_namespace(cls) -> List[str]: | |
"""Get the namespace of the langchain object.""" | |
return ["langchain", "llms", "openai"] | |
def is_lc_serializable(cls) -> bool: | |
"""Return whether this model can be serialized by Langchain.""" | |
return True | |
def _invocation_params(self) -> Dict[str, Any]: | |
return {**{"model": self.model_name}, **super()._invocation_params} | |
def lc_secrets(self) -> Dict[str, str]: | |
return {"openai_api_key": "OPENAI_API_KEY"} | |
def lc_attributes(self) -> Dict[str, Any]: | |
attributes: Dict[str, Any] = {} | |
if self.openai_api_base: | |
attributes["openai_api_base"] = self.openai_api_base | |
if self.openai_organization: | |
attributes["openai_organization"] = self.openai_organization | |
if self.openai_proxy: | |
attributes["openai_proxy"] = self.openai_proxy | |
return attributes | |