anpigon's picture
add langchain docs
ed4d993
"""
LangChain MongoDB Caches
Functions "_loads_generations" and "_dumps_generations"
are duplicated in this utility from modules:
- "libs/community/langchain_community/cache.py"
"""
import json
import logging
import time
from importlib.metadata import version
from typing import Any, Callable, Dict, Optional, Union
from langchain_core.caches import RETURN_VAL_TYPE, BaseCache
from langchain_core.embeddings import Embeddings
from langchain_core.load.dump import dumps
from langchain_core.load.load import loads
from langchain_core.outputs import Generation
from pymongo import MongoClient
from pymongo.collection import Collection
from pymongo.database import Database
from pymongo.driver_info import DriverInfo
from langchain_mongodb.vectorstores import MongoDBAtlasVectorSearch
logger = logging.getLogger(__file__)
def _generate_mongo_client(connection_string: str) -> MongoClient:
return MongoClient(
connection_string,
driver=DriverInfo(name="Langchain", version=version("langchain-mongodb")),
)
def _dumps_generations(generations: RETURN_VAL_TYPE) -> str:
"""
Serialization for generic RETURN_VAL_TYPE, i.e. sequence of `Generation`
Args:
generations (RETURN_VAL_TYPE): A list of language model generations.
Returns:
str: a single string representing a list of generations.
This function (+ its counterpart `_loads_generations`) rely on
the dumps/loads pair with Reviver, so are able to deal
with all subclasses of Generation.
Each item in the list can be `dumps`ed to a string,
then we make the whole list of strings into a json-dumped.
"""
return json.dumps([dumps(_item) for _item in generations])
def _loads_generations(generations_str: str) -> Union[RETURN_VAL_TYPE, None]:
"""
Deserialization of a string into a generic RETURN_VAL_TYPE
(i.e. a sequence of `Generation`).
See `_dumps_generations`, the inverse of this function.
Args:
generations_str (str): A string representing a list of generations.
Compatible with the legacy cache-blob format
Does not raise exceptions for malformed entries, just logs a warning
and returns none: the caller should be prepared for such a cache miss.
Returns:
RETURN_VAL_TYPE: A list of generations.
"""
try:
generations = [loads(_item_str) for _item_str in json.loads(generations_str)]
return generations
except (json.JSONDecodeError, TypeError):
# deferring the (soft) handling to after the legacy-format attempt
pass
try:
gen_dicts = json.loads(generations_str)
# not relying on `_load_generations_from_json` (which could disappear):
generations = [Generation(**generation_dict) for generation_dict in gen_dicts]
logger.warning(
f"Legacy 'Generation' cached blob encountered: '{generations_str}'"
)
return generations
except (json.JSONDecodeError, TypeError):
logger.warning(
f"Malformed/unparsable cached blob encountered: '{generations_str}'"
)
return None
def _wait_until(
predicate: Callable, success_description: Any, timeout: float = 10.0
) -> None:
"""Wait up to 10 seconds (by default) for predicate to be true.
E.g.:
wait_until(lambda: client.primary == ('a', 1),
'connect to the primary')
If the lambda-expression isn't true after 10 seconds, we raise
AssertionError("Didn't ever connect to the primary").
Returns the predicate's first true value.
"""
start = time.time()
interval = min(float(timeout) / 100, 0.1)
while True:
retval = predicate()
if retval:
return retval
if time.time() - start > timeout:
raise TimeoutError("Didn't ever %s" % success_description)
time.sleep(interval)
class MongoDBCache(BaseCache):
"""MongoDB Atlas cache
A cache that uses MongoDB Atlas as a backend
"""
PROMPT = "prompt"
LLM = "llm"
RETURN_VAL = "return_val"
def __init__(
self,
connection_string: str,
collection_name: str = "default",
database_name: str = "default",
**kwargs: Dict[str, Any],
) -> None:
"""
Initialize Atlas Cache. Creates collection on instantiation
Args:
collection_name (str): Name of collection for cache to live.
Defaults to "default".
connection_string (str): Connection URI to MongoDB Atlas.
Defaults to "default".
database_name (str): Name of database for cache to live.
Defaults to "default".
"""
self.client = _generate_mongo_client(connection_string)
self.__database_name = database_name
self.__collection_name = collection_name
if self.__collection_name not in self.database.list_collection_names():
self.database.create_collection(self.__collection_name)
# Create an index on key and llm_string
self.collection.create_index([self.PROMPT, self.LLM])
@property
def database(self) -> Database:
"""Returns the database used to store cache values."""
return self.client[self.__database_name]
@property
def collection(self) -> Collection:
"""Returns the collection used to store cache values."""
return self.database[self.__collection_name]
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
return_doc = (
self.collection.find_one(self._generate_keys(prompt, llm_string)) or {}
)
return_val = return_doc.get(self.RETURN_VAL)
return _loads_generations(return_val) if return_val else None # type: ignore
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string."""
self.collection.update_one(
{**self._generate_keys(prompt, llm_string)},
{"$set": {self.RETURN_VAL: _dumps_generations(return_val)}},
upsert=True,
)
def _generate_keys(self, prompt: str, llm_string: str) -> Dict[str, str]:
"""Create keyed fields for caching layer"""
return {self.PROMPT: prompt, self.LLM: llm_string}
def clear(self, **kwargs: Any) -> None:
"""Clear cache that can take additional keyword arguments.
Any additional arguments will propagate as filtration criteria for
what gets deleted.
E.g.
# Delete only entries that have llm_string as "fake-model"
self.clear(llm_string="fake-model")
"""
self.collection.delete_many({**kwargs})
class MongoDBAtlasSemanticCache(BaseCache, MongoDBAtlasVectorSearch):
"""MongoDB Atlas Semantic cache.
A Cache backed by a MongoDB Atlas server with vector-store support
"""
LLM = "llm_string"
RETURN_VAL = "return_val"
def __init__(
self,
connection_string: str,
embedding: Embeddings,
collection_name: str = "default",
database_name: str = "default",
index_name: str = "default",
wait_until_ready: bool = False,
score_threshold: Optional[float] = None,
**kwargs: Dict[str, Any],
):
"""
Initialize Atlas VectorSearch Cache.
Assumes collection exists before instantiation
Args:
connection_string (str): MongoDB URI to connect to MongoDB Atlas cluster.
embedding (Embeddings): Text embedding model to use.
collection_name (str): MongoDB Collection to add the texts to.
Defaults to "default".
database_name (str): MongoDB Database where to store texts.
Defaults to "default".
index_name: Name of the Atlas Search index.
defaults to 'default'
wait_until_ready (bool): Block until MongoDB Atlas finishes indexing
the stored text. Hard timeout of 10 seconds. Defaults to False.
"""
client = _generate_mongo_client(connection_string)
self.collection = client[database_name][collection_name]
self.score_threshold = score_threshold
self._wait_until_ready = wait_until_ready
super().__init__(
collection=self.collection,
embedding=embedding,
index_name=index_name,
**kwargs, # type: ignore
)
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
post_filter_pipeline = (
[{"$match": {"score": {"$gte": self.score_threshold}}}]
if self.score_threshold
else None
)
search_response = self.similarity_search_with_score(
prompt,
1,
pre_filter={self.LLM: {"$eq": llm_string}},
post_filter_pipeline=post_filter_pipeline,
)
if search_response:
return_val = search_response[0][0].metadata.get(self.RETURN_VAL)
response = _loads_generations(return_val) or return_val # type: ignore
return response
return None
def update(
self,
prompt: str,
llm_string: str,
return_val: RETURN_VAL_TYPE,
wait_until_ready: Optional[bool] = None,
) -> None:
"""Update cache based on prompt and llm_string."""
self.add_texts(
[prompt],
[
{
self.LLM: llm_string,
self.RETURN_VAL: _dumps_generations(return_val),
}
],
)
wait = self._wait_until_ready if wait_until_ready is None else wait_until_ready
def is_indexed() -> bool:
return self.lookup(prompt, llm_string) == return_val
if wait:
_wait_until(is_indexed, return_val)
def clear(self, **kwargs: Any) -> None:
"""Clear cache that can take additional keyword arguments.
Any additional arguments will propagate as filtration criteria for
what gets deleted. It will delete any locally cached content regardless
E.g.
# Delete only entries that have llm_string as "fake-model"
self.clear(llm_string="fake-model")
"""
self.collection.delete_many({**kwargs})