anpigon's picture
add langchain docs
ed4d993
raw
history blame
671 Bytes
from pathlib import Path
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Neo4jVector
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import TokenTextSplitter
txt_path = Path(__file__).parent / "dune.txt"
# Load the text file
loader = TextLoader(str(txt_path))
raw_documents = loader.load()
# Define chunking strategy
splitter = TokenTextSplitter(chunk_size=512, chunk_overlap=24)
documents = splitter.split_documents(raw_documents)
# Calculate embedding values and store them in the graph
Neo4jVector.from_documents(
documents,
OpenAIEmbeddings(),
index_name="dune",
)