anpigon's picture
add langchain docs
ed4d993
raw
history blame
20.6 kB
import json
import urllib.request
import warnings
from abc import abstractmethod
from enum import Enum
from typing import Any, Dict, List, Mapping, Optional
from langchain_core.callbacks.manager import CallbackManagerForLLMRun
from langchain_core.language_models.llms import BaseLLM
from langchain_core.outputs import Generation, LLMResult
from langchain_core.pydantic_v1 import BaseModel, SecretStr, root_validator, validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
DEFAULT_TIMEOUT = 50
class AzureMLEndpointClient(object):
"""AzureML Managed Endpoint client."""
def __init__(
self,
endpoint_url: str,
endpoint_api_key: str,
deployment_name: str = "",
timeout: int = DEFAULT_TIMEOUT,
) -> None:
"""Initialize the class."""
if not endpoint_api_key or not endpoint_url:
raise ValueError(
"""A key/token and REST endpoint should
be provided to invoke the endpoint"""
)
self.endpoint_url = endpoint_url
self.endpoint_api_key = endpoint_api_key
self.deployment_name = deployment_name
self.timeout = timeout
def call(
self,
body: bytes,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> bytes:
"""call."""
# The azureml-model-deployment header will force the request to go to a
# specific deployment. Remove this header to have the request observe the
# endpoint traffic rules.
headers = {
"Content-Type": "application/json",
"Authorization": ("Bearer " + self.endpoint_api_key),
}
if self.deployment_name != "":
headers["azureml-model-deployment"] = self.deployment_name
req = urllib.request.Request(self.endpoint_url, body, headers)
response = urllib.request.urlopen(
req, timeout=kwargs.get("timeout", self.timeout)
)
result = response.read()
return result
class AzureMLEndpointApiType(str, Enum):
"""Azure ML endpoints API types. Use `dedicated` for models deployed in hosted
infrastructure (also known as Online Endpoints in Azure Machine Learning),
or `serverless` for models deployed as a service with a
pay-as-you-go billing or PTU.
"""
dedicated = "dedicated"
realtime = "realtime" #: Deprecated
serverless = "serverless"
class ContentFormatterBase:
"""Transform request and response of AzureML endpoint to match with
required schema.
"""
"""
Example:
.. code-block:: python
class ContentFormatter(ContentFormatterBase):
content_type = "application/json"
accepts = "application/json"
def format_request_payload(
self,
prompt: str,
model_kwargs: Dict,
api_type: AzureMLEndpointApiType,
) -> bytes:
input_str = json.dumps(
{
"inputs": {"input_string": [prompt]},
"parameters": model_kwargs,
}
)
return str.encode(input_str)
def format_response_payload(
self, output: str, api_type: AzureMLEndpointApiType
) -> str:
response_json = json.loads(output)
return response_json[0]["0"]
"""
content_type: Optional[str] = "application/json"
"""The MIME type of the input data passed to the endpoint"""
accepts: Optional[str] = "application/json"
"""The MIME type of the response data returned from the endpoint"""
format_error_msg: str = (
"Error while formatting response payload for chat model of type "
" `{api_type}`. Are you using the right formatter for the deployed "
" model and endpoint type?"
)
@staticmethod
def escape_special_characters(prompt: str) -> str:
"""Escapes any special characters in `prompt`"""
escape_map = {
"\\": "\\\\",
'"': '\\"',
"\b": "\\b",
"\f": "\\f",
"\n": "\\n",
"\r": "\\r",
"\t": "\\t",
}
# Replace each occurrence of the specified characters with escaped versions
for escape_sequence, escaped_sequence in escape_map.items():
prompt = prompt.replace(escape_sequence, escaped_sequence)
return prompt
@property
def supported_api_types(self) -> List[AzureMLEndpointApiType]:
"""Supported APIs for the given formatter. Azure ML supports
deploying models using different hosting methods. Each method may have
a different API structure."""
return [AzureMLEndpointApiType.dedicated]
def format_request_payload(
self,
prompt: str,
model_kwargs: Dict,
api_type: AzureMLEndpointApiType = AzureMLEndpointApiType.dedicated,
) -> Any:
"""Formats the request body according to the input schema of
the model. Returns bytes or seekable file like object in the
format specified in the content_type request header.
"""
raise NotImplementedError()
@abstractmethod
def format_response_payload(
self,
output: bytes,
api_type: AzureMLEndpointApiType = AzureMLEndpointApiType.dedicated,
) -> Generation:
"""Formats the response body according to the output
schema of the model. Returns the data type that is
received from the response.
"""
class GPT2ContentFormatter(ContentFormatterBase):
"""Content handler for GPT2"""
@property
def supported_api_types(self) -> List[AzureMLEndpointApiType]:
return [AzureMLEndpointApiType.dedicated]
def format_request_payload( # type: ignore[override]
self, prompt: str, model_kwargs: Dict, api_type: AzureMLEndpointApiType
) -> bytes:
prompt = ContentFormatterBase.escape_special_characters(prompt)
request_payload = json.dumps(
{"inputs": {"input_string": [f'"{prompt}"']}, "parameters": model_kwargs}
)
return str.encode(request_payload)
def format_response_payload( # type: ignore[override]
self, output: bytes, api_type: AzureMLEndpointApiType
) -> Generation:
try:
choice = json.loads(output)[0]["0"]
except (KeyError, IndexError, TypeError) as e:
raise ValueError(self.format_error_msg.format(api_type=api_type)) from e # type: ignore[union-attr]
return Generation(text=choice)
class OSSContentFormatter(GPT2ContentFormatter):
"""Deprecated: Kept for backwards compatibility
Content handler for LLMs from the OSS catalog."""
content_formatter: Any = None
def __init__(self) -> None:
super().__init__()
warnings.warn(
"""`OSSContentFormatter` will be deprecated in the future.
Please use `GPT2ContentFormatter` instead.
"""
)
class HFContentFormatter(ContentFormatterBase):
"""Content handler for LLMs from the HuggingFace catalog."""
@property
def supported_api_types(self) -> List[AzureMLEndpointApiType]:
return [AzureMLEndpointApiType.dedicated]
def format_request_payload( # type: ignore[override]
self, prompt: str, model_kwargs: Dict, api_type: AzureMLEndpointApiType
) -> bytes:
ContentFormatterBase.escape_special_characters(prompt)
request_payload = json.dumps(
{"inputs": [f'"{prompt}"'], "parameters": model_kwargs}
)
return str.encode(request_payload)
def format_response_payload( # type: ignore[override]
self, output: bytes, api_type: AzureMLEndpointApiType
) -> Generation:
try:
choice = json.loads(output)[0]["0"]["generated_text"]
except (KeyError, IndexError, TypeError) as e:
raise ValueError(self.format_error_msg.format(api_type=api_type)) from e # type: ignore[union-attr]
return Generation(text=choice)
class DollyContentFormatter(ContentFormatterBase):
"""Content handler for the Dolly-v2-12b model"""
@property
def supported_api_types(self) -> List[AzureMLEndpointApiType]:
return [AzureMLEndpointApiType.dedicated]
def format_request_payload( # type: ignore[override]
self, prompt: str, model_kwargs: Dict, api_type: AzureMLEndpointApiType
) -> bytes:
prompt = ContentFormatterBase.escape_special_characters(prompt)
request_payload = json.dumps(
{
"input_data": {"input_string": [f'"{prompt}"']},
"parameters": model_kwargs,
}
)
return str.encode(request_payload)
def format_response_payload( # type: ignore[override]
self, output: bytes, api_type: AzureMLEndpointApiType
) -> Generation:
try:
choice = json.loads(output)[0]
except (KeyError, IndexError, TypeError) as e:
raise ValueError(self.format_error_msg.format(api_type=api_type)) from e # type: ignore[union-attr]
return Generation(text=choice)
class CustomOpenAIContentFormatter(ContentFormatterBase):
"""Content formatter for models that use the OpenAI like API scheme."""
@property
def supported_api_types(self) -> List[AzureMLEndpointApiType]:
return [AzureMLEndpointApiType.dedicated, AzureMLEndpointApiType.serverless]
def format_request_payload( # type: ignore[override]
self, prompt: str, model_kwargs: Dict, api_type: AzureMLEndpointApiType
) -> bytes:
"""Formats the request according to the chosen api"""
prompt = ContentFormatterBase.escape_special_characters(prompt)
if api_type in [
AzureMLEndpointApiType.dedicated,
AzureMLEndpointApiType.realtime,
]:
request_payload = json.dumps(
{
"input_data": {
"input_string": [f'"{prompt}"'],
"parameters": model_kwargs,
}
}
)
elif api_type == AzureMLEndpointApiType.serverless:
request_payload = json.dumps({"prompt": prompt, **model_kwargs})
else:
raise ValueError(
f"`api_type` {api_type} is not supported by this formatter"
)
return str.encode(request_payload)
def format_response_payload( # type: ignore[override]
self, output: bytes, api_type: AzureMLEndpointApiType
) -> Generation:
"""Formats response"""
if api_type in [
AzureMLEndpointApiType.dedicated,
AzureMLEndpointApiType.realtime,
]:
try:
choice = json.loads(output)[0]["0"]
except (KeyError, IndexError, TypeError) as e:
raise ValueError(self.format_error_msg.format(api_type=api_type)) from e # type: ignore[union-attr]
return Generation(text=choice)
if api_type == AzureMLEndpointApiType.serverless:
try:
choice = json.loads(output)["choices"][0]
if not isinstance(choice, dict):
raise TypeError(
"Endpoint response is not well formed for a chat "
"model. Expected `dict` but `{type(choice)}` was "
"received."
)
except (KeyError, IndexError, TypeError) as e:
raise ValueError(self.format_error_msg.format(api_type=api_type)) from e # type: ignore[union-attr]
return Generation(
text=choice["text"].strip(),
generation_info=dict(
finish_reason=choice.get("finish_reason"),
logprobs=choice.get("logprobs"),
),
)
raise ValueError(f"`api_type` {api_type} is not supported by this formatter")
class LlamaContentFormatter(CustomOpenAIContentFormatter):
"""Deprecated: Kept for backwards compatibility
Content formatter for Llama."""
content_formatter: Any = None
def __init__(self) -> None:
super().__init__()
warnings.warn(
"""`LlamaContentFormatter` will be deprecated in the future.
Please use `CustomOpenAIContentFormatter` instead.
"""
)
class AzureMLBaseEndpoint(BaseModel):
"""Azure ML Online Endpoint models."""
endpoint_url: str = ""
"""URL of pre-existing Endpoint. Should be passed to constructor or specified as
env var `AZUREML_ENDPOINT_URL`."""
endpoint_api_type: AzureMLEndpointApiType = AzureMLEndpointApiType.dedicated
"""Type of the endpoint being consumed. Possible values are `serverless` for
pay-as-you-go and `dedicated` for dedicated endpoints. """
endpoint_api_key: SecretStr = convert_to_secret_str("")
"""Authentication Key for Endpoint. Should be passed to constructor or specified as
env var `AZUREML_ENDPOINT_API_KEY`."""
deployment_name: str = ""
"""Deployment Name for Endpoint. NOT REQUIRED to call endpoint. Should be passed
to constructor or specified as env var `AZUREML_DEPLOYMENT_NAME`."""
timeout: int = DEFAULT_TIMEOUT
"""Request timeout for calls to the endpoint"""
http_client: Any = None #: :meta private:
max_retries: int = 1
content_formatter: Any = None
"""The content formatter that provides an input and output
transform function to handle formats between the LLM and
the endpoint"""
model_kwargs: Optional[dict] = None
"""Keyword arguments to pass to the model."""
@root_validator(pre=True)
def validate_environ(cls, values: Dict) -> Dict:
values["endpoint_api_key"] = convert_to_secret_str(
get_from_dict_or_env(values, "endpoint_api_key", "AZUREML_ENDPOINT_API_KEY")
)
values["endpoint_url"] = get_from_dict_or_env(
values, "endpoint_url", "AZUREML_ENDPOINT_URL"
)
values["deployment_name"] = get_from_dict_or_env(
values, "deployment_name", "AZUREML_DEPLOYMENT_NAME", ""
)
values["endpoint_api_type"] = get_from_dict_or_env(
values,
"endpoint_api_type",
"AZUREML_ENDPOINT_API_TYPE",
AzureMLEndpointApiType.dedicated,
)
values["timeout"] = get_from_dict_or_env(
values,
"timeout",
"AZUREML_TIMEOUT",
str(DEFAULT_TIMEOUT),
)
return values
@validator("content_formatter")
def validate_content_formatter(
cls, field_value: Any, values: Dict
) -> ContentFormatterBase:
"""Validate that content formatter is supported by endpoint type."""
endpoint_api_type = values.get("endpoint_api_type")
if endpoint_api_type not in field_value.supported_api_types:
raise ValueError(
f"Content formatter f{type(field_value)} is not supported by this "
f"endpoint. Supported types are {field_value.supported_api_types} "
f"but endpoint is {endpoint_api_type}."
)
return field_value
@validator("endpoint_url")
def validate_endpoint_url(cls, field_value: Any) -> str:
"""Validate that endpoint url is complete."""
if field_value.endswith("/"):
field_value = field_value[:-1]
if field_value.endswith("inference.ml.azure.com"):
raise ValueError(
"`endpoint_url` should contain the full invocation URL including "
"`/score` for `endpoint_api_type='dedicated'` or `/v1/completions` "
"or `/v1/chat/completions` for `endpoint_api_type='serverless'`"
)
return field_value
@validator("endpoint_api_type")
def validate_endpoint_api_type(
cls, field_value: Any, values: Dict
) -> AzureMLEndpointApiType:
"""Validate that endpoint api type is compatible with the URL format."""
endpoint_url = values.get("endpoint_url")
if (
(
field_value == AzureMLEndpointApiType.dedicated
or field_value == AzureMLEndpointApiType.realtime
)
and not endpoint_url.endswith("/score") # type: ignore[union-attr]
):
raise ValueError(
"Endpoints of type `dedicated` should follow the format "
"`https://<your-endpoint>.<your_region>.inference.ml.azure.com/score`."
" If your endpoint URL ends with `/v1/completions` or"
"`/v1/chat/completions`, use `endpoint_api_type='serverless'` instead."
)
if field_value == AzureMLEndpointApiType.serverless and not (
endpoint_url.endswith("/v1/completions") # type: ignore[union-attr]
or endpoint_url.endswith("/v1/chat/completions") # type: ignore[union-attr]
):
raise ValueError(
"Endpoints of type `serverless` should follow the format "
"`https://<your-endpoint>.<your_region>.inference.ml.azure.com/v1/chat/completions`"
" or `https://<your-endpoint>.<your_region>.inference.ml.azure.com/v1/chat/completions`"
)
return field_value
@validator("http_client", always=True)
def validate_client(cls, field_value: Any, values: Dict) -> AzureMLEndpointClient:
"""Validate that api key and python package exists in environment."""
endpoint_url = values.get("endpoint_url")
endpoint_key = values.get("endpoint_api_key")
deployment_name = values.get("deployment_name")
timeout = values.get("timeout", DEFAULT_TIMEOUT)
http_client = AzureMLEndpointClient(
endpoint_url, # type: ignore
endpoint_key.get_secret_value(), # type: ignore
deployment_name, # type: ignore
timeout, # type: ignore
)
return http_client
class AzureMLOnlineEndpoint(BaseLLM, AzureMLBaseEndpoint):
"""Azure ML Online Endpoint models.
Example:
.. code-block:: python
azure_llm = AzureMLOnlineEndpoint(
endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/score",
endpoint_api_type=AzureMLApiType.dedicated,
endpoint_api_key="my-api-key",
timeout=120,
content_formatter=content_formatter,
)
"""
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
_model_kwargs = self.model_kwargs or {}
return {
**{"deployment_name": self.deployment_name},
**{"model_kwargs": _model_kwargs},
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "azureml_endpoint"
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
"""Run the LLM on the given prompts.
Args:
prompts: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = azureml_model.invoke("Tell me a joke.")
"""
_model_kwargs = self.model_kwargs or {}
_model_kwargs.update(kwargs)
if stop:
_model_kwargs["stop"] = stop
generations = []
for prompt in prompts:
request_payload = self.content_formatter.format_request_payload(
prompt, _model_kwargs, self.endpoint_api_type
)
response_payload = self.http_client.call(
body=request_payload, run_manager=run_manager
)
generated_text = self.content_formatter.format_response_payload(
response_payload, self.endpoint_api_type
)
generations.append([generated_text])
return LLMResult(generations=generations)