Spaces:
Runtime error
Runtime error
from typing import Any, Dict, List, Mapping, Optional, Tuple | |
import requests | |
from langchain_core.embeddings import Embeddings | |
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator | |
from langchain_core.utils import get_from_dict_or_env | |
class MosaicMLInstructorEmbeddings(BaseModel, Embeddings): | |
"""MosaicML embedding service. | |
To use, you should have the | |
environment variable ``MOSAICML_API_TOKEN`` set with your API token, or pass | |
it as a named parameter to the constructor. | |
Example: | |
.. code-block:: python | |
from langchain_community.llms import MosaicMLInstructorEmbeddings | |
endpoint_url = ( | |
"https://models.hosted-on.mosaicml.hosting/instructor-large/v1/predict" | |
) | |
mosaic_llm = MosaicMLInstructorEmbeddings( | |
endpoint_url=endpoint_url, | |
mosaicml_api_token="my-api-key" | |
) | |
""" | |
endpoint_url: str = ( | |
"https://models.hosted-on.mosaicml.hosting/instructor-xl/v1/predict" | |
) | |
"""Endpoint URL to use.""" | |
embed_instruction: str = "Represent the document for retrieval: " | |
"""Instruction used to embed documents.""" | |
query_instruction: str = ( | |
"Represent the question for retrieving supporting documents: " | |
) | |
"""Instruction used to embed the query.""" | |
retry_sleep: float = 1.0 | |
"""How long to try sleeping for if a rate limit is encountered""" | |
mosaicml_api_token: Optional[str] = None | |
class Config: | |
"""Configuration for this pydantic object.""" | |
extra = Extra.forbid | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that api key and python package exists in environment.""" | |
mosaicml_api_token = get_from_dict_or_env( | |
values, "mosaicml_api_token", "MOSAICML_API_TOKEN" | |
) | |
values["mosaicml_api_token"] = mosaicml_api_token | |
return values | |
def _identifying_params(self) -> Mapping[str, Any]: | |
"""Get the identifying parameters.""" | |
return {"endpoint_url": self.endpoint_url} | |
def _embed( | |
self, input: List[Tuple[str, str]], is_retry: bool = False | |
) -> List[List[float]]: | |
payload = {"inputs": input} | |
# HTTP headers for authorization | |
headers = { | |
"Authorization": f"{self.mosaicml_api_token}", | |
"Content-Type": "application/json", | |
} | |
# send request | |
try: | |
response = requests.post(self.endpoint_url, headers=headers, json=payload) | |
except requests.exceptions.RequestException as e: | |
raise ValueError(f"Error raised by inference endpoint: {e}") | |
try: | |
if response.status_code == 429: | |
if not is_retry: | |
import time | |
time.sleep(self.retry_sleep) | |
return self._embed(input, is_retry=True) | |
raise ValueError( | |
f"Error raised by inference API: rate limit exceeded.\nResponse: " | |
f"{response.text}" | |
) | |
parsed_response = response.json() | |
# The inference API has changed a couple of times, so we add some handling | |
# to be robust to multiple response formats. | |
if isinstance(parsed_response, dict): | |
output_keys = ["data", "output", "outputs"] | |
for key in output_keys: | |
if key in parsed_response: | |
output_item = parsed_response[key] | |
break | |
else: | |
raise ValueError( | |
f"No key data or output in response: {parsed_response}" | |
) | |
if isinstance(output_item, list) and isinstance(output_item[0], list): | |
embeddings = output_item | |
else: | |
embeddings = [output_item] | |
else: | |
raise ValueError(f"Unexpected response type: {parsed_response}") | |
except requests.exceptions.JSONDecodeError as e: | |
raise ValueError( | |
f"Error raised by inference API: {e}.\nResponse: {response.text}" | |
) | |
return embeddings | |
def embed_documents(self, texts: List[str]) -> List[List[float]]: | |
"""Embed documents using a MosaicML deployed instructor embedding model. | |
Args: | |
texts: The list of texts to embed. | |
Returns: | |
List of embeddings, one for each text. | |
""" | |
instruction_pairs = [(self.embed_instruction, text) for text in texts] | |
embeddings = self._embed(instruction_pairs) | |
return embeddings | |
def embed_query(self, text: str) -> List[float]: | |
"""Embed a query using a MosaicML deployed instructor embedding model. | |
Args: | |
text: The text to embed. | |
Returns: | |
Embeddings for the text. | |
""" | |
instruction_pair = (self.query_instruction, text) | |
embedding = self._embed([instruction_pair])[0] | |
return embedding | |