Spaces:
Runtime error
Runtime error
langchain-qa-bot
/
docs
/langchain
/libs
/community
/langchain_community
/callbacks
/tracers
/wandb.py
"""A Tracer Implementation that records activity to Weights & Biases.""" | |
from __future__ import annotations | |
import json | |
from typing import ( | |
TYPE_CHECKING, | |
Any, | |
Dict, | |
List, | |
Optional, | |
Sequence, | |
Tuple, | |
TypedDict, | |
Union, | |
) | |
from langchain_core.tracers.base import BaseTracer | |
from langchain_core.tracers.schemas import Run | |
if TYPE_CHECKING: | |
from wandb import Settings as WBSettings | |
from wandb.sdk.data_types.trace_tree import Span | |
from wandb.sdk.lib.paths import StrPath | |
from wandb.wandb_run import Run as WBRun | |
PRINT_WARNINGS = True | |
def _serialize_io(run_inputs: Optional[dict]) -> dict: | |
if not run_inputs: | |
return {} | |
from google.protobuf.json_format import MessageToJson | |
from google.protobuf.message import Message | |
serialized_inputs = {} | |
for key, value in run_inputs.items(): | |
if isinstance(value, Message): | |
serialized_inputs[key] = MessageToJson(value) | |
elif key == "input_documents": | |
serialized_inputs.update( | |
{f"input_document_{i}": doc.json() for i, doc in enumerate(value)} | |
) | |
else: | |
serialized_inputs[key] = value | |
return serialized_inputs | |
class RunProcessor: | |
"""Handles the conversion of a LangChain Runs into a WBTraceTree.""" | |
def __init__(self, wandb_module: Any, trace_module: Any): | |
self.wandb = wandb_module | |
self.trace_tree = trace_module | |
def process_span(self, run: Run) -> Optional["Span"]: | |
"""Converts a LangChain Run into a W&B Trace Span. | |
:param run: The LangChain Run to convert. | |
:return: The converted W&B Trace Span. | |
""" | |
try: | |
span = self._convert_lc_run_to_wb_span(run) | |
return span | |
except Exception as e: | |
if PRINT_WARNINGS: | |
self.wandb.termwarn( | |
f"Skipping trace saving - unable to safely convert LangChain Run " | |
f"into W&B Trace due to: {e}" | |
) | |
return None | |
def _convert_run_to_wb_span(self, run: Run) -> "Span": | |
"""Base utility to create a span from a run. | |
:param run: The run to convert. | |
:return: The converted Span. | |
""" | |
attributes = {**run.extra} if run.extra else {} | |
attributes["execution_order"] = run.execution_order # type: ignore | |
return self.trace_tree.Span( | |
span_id=str(run.id) if run.id is not None else None, | |
name=run.name, | |
start_time_ms=int(run.start_time.timestamp() * 1000), | |
end_time_ms=int(run.end_time.timestamp() * 1000) | |
if run.end_time is not None | |
else None, | |
status_code=self.trace_tree.StatusCode.SUCCESS | |
if run.error is None | |
else self.trace_tree.StatusCode.ERROR, | |
status_message=run.error, | |
attributes=attributes, | |
) | |
def _convert_llm_run_to_wb_span(self, run: Run) -> "Span": | |
"""Converts a LangChain LLM Run into a W&B Trace Span. | |
:param run: The LangChain LLM Run to convert. | |
:return: The converted W&B Trace Span. | |
""" | |
base_span = self._convert_run_to_wb_span(run) | |
if base_span.attributes is None: | |
base_span.attributes = {} | |
base_span.attributes["llm_output"] = (run.outputs or {}).get("llm_output", {}) | |
base_span.results = [ | |
self.trace_tree.Result( | |
inputs={"prompt": prompt}, | |
outputs={ | |
f"gen_{g_i}": gen["text"] | |
for g_i, gen in enumerate(run.outputs["generations"][ndx]) | |
} | |
if ( | |
run.outputs is not None | |
and len(run.outputs["generations"]) > ndx | |
and len(run.outputs["generations"][ndx]) > 0 | |
) | |
else None, | |
) | |
for ndx, prompt in enumerate(run.inputs["prompts"] or []) | |
] | |
base_span.span_kind = self.trace_tree.SpanKind.LLM | |
return base_span | |
def _convert_chain_run_to_wb_span(self, run: Run) -> "Span": | |
"""Converts a LangChain Chain Run into a W&B Trace Span. | |
:param run: The LangChain Chain Run to convert. | |
:return: The converted W&B Trace Span. | |
""" | |
base_span = self._convert_run_to_wb_span(run) | |
base_span.results = [ | |
self.trace_tree.Result( | |
inputs=_serialize_io(run.inputs), outputs=_serialize_io(run.outputs) | |
) | |
] | |
base_span.child_spans = [ | |
self._convert_lc_run_to_wb_span(child_run) for child_run in run.child_runs | |
] | |
base_span.span_kind = ( | |
self.trace_tree.SpanKind.AGENT | |
if "agent" in run.name.lower() | |
else self.trace_tree.SpanKind.CHAIN | |
) | |
return base_span | |
def _convert_tool_run_to_wb_span(self, run: Run) -> "Span": | |
"""Converts a LangChain Tool Run into a W&B Trace Span. | |
:param run: The LangChain Tool Run to convert. | |
:return: The converted W&B Trace Span. | |
""" | |
base_span = self._convert_run_to_wb_span(run) | |
base_span.results = [ | |
self.trace_tree.Result( | |
inputs=_serialize_io(run.inputs), outputs=_serialize_io(run.outputs) | |
) | |
] | |
base_span.child_spans = [ | |
self._convert_lc_run_to_wb_span(child_run) for child_run in run.child_runs | |
] | |
base_span.span_kind = self.trace_tree.SpanKind.TOOL | |
return base_span | |
def _convert_lc_run_to_wb_span(self, run: Run) -> "Span": | |
"""Utility to convert any generic LangChain Run into a W&B Trace Span. | |
:param run: The LangChain Run to convert. | |
:return: The converted W&B Trace Span. | |
""" | |
if run.run_type == "llm": | |
return self._convert_llm_run_to_wb_span(run) | |
elif run.run_type == "chain": | |
return self._convert_chain_run_to_wb_span(run) | |
elif run.run_type == "tool": | |
return self._convert_tool_run_to_wb_span(run) | |
else: | |
return self._convert_run_to_wb_span(run) | |
def process_model(self, run: Run) -> Optional[Dict[str, Any]]: | |
"""Utility to process a run for wandb model_dict serialization. | |
:param run: The run to process. | |
:return: The convert model_dict to pass to WBTraceTree. | |
""" | |
try: | |
data = json.loads(run.json()) | |
processed = self.flatten_run(data) | |
keep_keys = ( | |
"id", | |
"name", | |
"serialized", | |
"inputs", | |
"outputs", | |
"parent_run_id", | |
"execution_order", | |
) | |
processed = self.truncate_run_iterative(processed, keep_keys=keep_keys) | |
exact_keys, partial_keys = ("lc", "type"), ("api_key",) | |
processed = self.modify_serialized_iterative( | |
processed, exact_keys=exact_keys, partial_keys=partial_keys | |
) | |
output = self.build_tree(processed) | |
return output | |
except Exception as e: | |
if PRINT_WARNINGS: | |
self.wandb.termwarn(f"WARNING: Failed to serialize model: {e}") | |
return None | |
def flatten_run(self, run: Dict[str, Any]) -> List[Dict[str, Any]]: | |
"""Utility to flatten a nest run object into a list of runs. | |
:param run: The base run to flatten. | |
:return: The flattened list of runs. | |
""" | |
def flatten(child_runs: List[Dict[str, Any]]) -> List[Dict[str, Any]]: | |
"""Utility to recursively flatten a list of child runs in a run. | |
:param child_runs: The list of child runs to flatten. | |
:return: The flattened list of runs. | |
""" | |
if child_runs is None: | |
return [] | |
result = [] | |
for item in child_runs: | |
child_runs = item.pop("child_runs", []) | |
result.append(item) | |
result.extend(flatten(child_runs)) | |
return result | |
return flatten([run]) | |
def truncate_run_iterative( | |
self, runs: List[Dict[str, Any]], keep_keys: Tuple[str, ...] = () | |
) -> List[Dict[str, Any]]: | |
"""Utility to truncate a list of runs dictionaries to only keep the specified | |
keys in each run. | |
:param runs: The list of runs to truncate. | |
:param keep_keys: The keys to keep in each run. | |
:return: The truncated list of runs. | |
""" | |
def truncate_single(run: Dict[str, Any]) -> Dict[str, Any]: | |
"""Utility to truncate a single run dictionary to only keep the specified | |
keys. | |
:param run: The run dictionary to truncate. | |
:return: The truncated run dictionary | |
""" | |
new_dict = {} | |
for key in run: | |
if key in keep_keys: | |
new_dict[key] = run.get(key) | |
return new_dict | |
return list(map(truncate_single, runs)) | |
def modify_serialized_iterative( | |
self, | |
runs: List[Dict[str, Any]], | |
exact_keys: Tuple[str, ...] = (), | |
partial_keys: Tuple[str, ...] = (), | |
) -> List[Dict[str, Any]]: | |
"""Utility to modify the serialized field of a list of runs dictionaries. | |
removes any keys that match the exact_keys and any keys that contain any of the | |
partial_keys. | |
recursively moves the dictionaries under the kwargs key to the top level. | |
changes the "id" field to a string "_kind" field that tells WBTraceTree how to | |
visualize the run. promotes the "serialized" field to the top level. | |
:param runs: The list of runs to modify. | |
:param exact_keys: A tuple of keys to remove from the serialized field. | |
:param partial_keys: A tuple of partial keys to remove from the serialized | |
field. | |
:return: The modified list of runs. | |
""" | |
def remove_exact_and_partial_keys(obj: Dict[str, Any]) -> Dict[str, Any]: | |
"""Recursively removes exact and partial keys from a dictionary. | |
:param obj: The dictionary to remove keys from. | |
:return: The modified dictionary. | |
""" | |
if isinstance(obj, dict): | |
obj = { | |
k: v | |
for k, v in obj.items() | |
if k not in exact_keys | |
and not any(partial in k for partial in partial_keys) | |
} | |
for k, v in obj.items(): | |
obj[k] = remove_exact_and_partial_keys(v) | |
elif isinstance(obj, list): | |
obj = [remove_exact_and_partial_keys(x) for x in obj] | |
return obj | |
def handle_id_and_kwargs( | |
obj: Dict[str, Any], root: bool = False | |
) -> Dict[str, Any]: | |
"""Recursively handles the id and kwargs fields of a dictionary. | |
changes the id field to a string "_kind" field that tells WBTraceTree how | |
to visualize the run. recursively moves the dictionaries under the kwargs | |
key to the top level. | |
:param obj: a run dictionary with id and kwargs fields. | |
:param root: whether this is the root dictionary or the serialized | |
dictionary. | |
:return: The modified dictionary. | |
""" | |
if isinstance(obj, dict): | |
if ("id" in obj or "name" in obj) and not root: | |
_kind = obj.get("id") | |
if not _kind: | |
_kind = [obj.get("name")] | |
obj["_kind"] = _kind[-1] | |
obj.pop("id", None) | |
obj.pop("name", None) | |
if "kwargs" in obj: | |
kwargs = obj.pop("kwargs") | |
for k, v in kwargs.items(): | |
obj[k] = v | |
for k, v in obj.items(): | |
obj[k] = handle_id_and_kwargs(v) | |
elif isinstance(obj, list): | |
obj = [handle_id_and_kwargs(x) for x in obj] | |
return obj | |
def transform_serialized(serialized: Dict[str, Any]) -> Dict[str, Any]: | |
"""Transforms the serialized field of a run dictionary to be compatible | |
with WBTraceTree. | |
:param serialized: The serialized field of a run dictionary. | |
:return: The transformed serialized field. | |
""" | |
serialized = handle_id_and_kwargs(serialized, root=True) | |
serialized = remove_exact_and_partial_keys(serialized) | |
return serialized | |
def transform_run(run: Dict[str, Any]) -> Dict[str, Any]: | |
"""Transforms a run dictionary to be compatible with WBTraceTree. | |
:param run: The run dictionary to transform. | |
:return: The transformed run dictionary. | |
""" | |
transformed_dict = transform_serialized(run) | |
serialized = transformed_dict.pop("serialized") | |
for k, v in serialized.items(): | |
transformed_dict[k] = v | |
_kind = transformed_dict.get("_kind", None) | |
name = transformed_dict.pop("name", None) | |
exec_ord = transformed_dict.pop("execution_order", None) | |
if not name: | |
name = _kind | |
output_dict = { | |
f"{exec_ord}_{name}": transformed_dict, | |
} | |
return output_dict | |
return list(map(transform_run, runs)) | |
def build_tree(self, runs: List[Dict[str, Any]]) -> Dict[str, Any]: | |
"""Builds a nested dictionary from a list of runs. | |
:param runs: The list of runs to build the tree from. | |
:return: The nested dictionary representing the langchain Run in a tree | |
structure compatible with WBTraceTree. | |
""" | |
id_to_data = {} | |
child_to_parent = {} | |
for entity in runs: | |
for key, data in entity.items(): | |
id_val = data.pop("id", None) | |
parent_run_id = data.pop("parent_run_id", None) | |
id_to_data[id_val] = {key: data} | |
if parent_run_id: | |
child_to_parent[id_val] = parent_run_id | |
for child_id, parent_id in child_to_parent.items(): | |
parent_dict = id_to_data[parent_id] | |
parent_dict[next(iter(parent_dict))][ | |
next(iter(id_to_data[child_id])) | |
] = id_to_data[child_id][next(iter(id_to_data[child_id]))] | |
root_dict = next( | |
data for id_val, data in id_to_data.items() if id_val not in child_to_parent | |
) | |
return root_dict | |
class WandbRunArgs(TypedDict): | |
"""Arguments for the WandbTracer.""" | |
job_type: Optional[str] | |
dir: Optional[StrPath] | |
config: Union[Dict, str, None] | |
project: Optional[str] | |
entity: Optional[str] | |
reinit: Optional[bool] | |
tags: Optional[Sequence] | |
group: Optional[str] | |
name: Optional[str] | |
notes: Optional[str] | |
magic: Optional[Union[dict, str, bool]] | |
config_exclude_keys: Optional[List[str]] | |
config_include_keys: Optional[List[str]] | |
anonymous: Optional[str] | |
mode: Optional[str] | |
allow_val_change: Optional[bool] | |
resume: Optional[Union[bool, str]] | |
force: Optional[bool] | |
tensorboard: Optional[bool] | |
sync_tensorboard: Optional[bool] | |
monitor_gym: Optional[bool] | |
save_code: Optional[bool] | |
id: Optional[str] | |
settings: Union[WBSettings, Dict[str, Any], None] | |
class WandbTracer(BaseTracer): | |
"""Callback Handler that logs to Weights and Biases. | |
This handler will log the model architecture and run traces to Weights and Biases. | |
This will ensure that all LangChain activity is logged to W&B. | |
""" | |
_run: Optional[WBRun] = None | |
_run_args: Optional[WandbRunArgs] = None | |
def __init__(self, run_args: Optional[WandbRunArgs] = None, **kwargs: Any) -> None: | |
"""Initializes the WandbTracer. | |
Parameters: | |
run_args: (dict, optional) Arguments to pass to `wandb.init()`. If not | |
provided, `wandb.init()` will be called with no arguments. Please | |
refer to the `wandb.init` for more details. | |
To use W&B to monitor all LangChain activity, add this tracer like any other | |
LangChain callback: | |
``` | |
from wandb.integration.langchain import WandbTracer | |
tracer = WandbTracer() | |
chain = LLMChain(llm, callbacks=[tracer]) | |
# ...end of notebook / script: | |
tracer.finish() | |
``` | |
""" | |
super().__init__(**kwargs) | |
try: | |
import wandb | |
from wandb.sdk.data_types import trace_tree | |
except ImportError as e: | |
raise ImportError( | |
"Could not import wandb python package." | |
"Please install it with `pip install -U wandb`." | |
) from e | |
self._wandb = wandb | |
self._trace_tree = trace_tree | |
self._run_args = run_args | |
self._ensure_run(should_print_url=(wandb.run is None)) | |
self.run_processor = RunProcessor(self._wandb, self._trace_tree) | |
def finish(self) -> None: | |
"""Waits for all asynchronous processes to finish and data to upload. | |
Proxy for `wandb.finish()`. | |
""" | |
self._wandb.finish() | |
def _log_trace_from_run(self, run: Run) -> None: | |
"""Logs a LangChain Run to W*B as a W&B Trace.""" | |
self._ensure_run() | |
root_span = self.run_processor.process_span(run) | |
model_dict = self.run_processor.process_model(run) | |
if root_span is None: | |
return | |
model_trace = self._trace_tree.WBTraceTree( | |
root_span=root_span, | |
model_dict=model_dict, | |
) | |
if self._wandb.run is not None: | |
self._wandb.run.log({"langchain_trace": model_trace}) | |
def _ensure_run(self, should_print_url: bool = False) -> None: | |
"""Ensures an active W&B run exists. | |
If not, will start a new run with the provided run_args. | |
""" | |
if self._wandb.run is None: | |
run_args: Dict = {**(self._run_args or {})} | |
if "settings" not in run_args: | |
run_args["settings"] = {"silent": True} | |
self._wandb.init(**run_args) | |
if self._wandb.run is not None: | |
if should_print_url: | |
run_url = self._wandb.run.settings.run_url | |
self._wandb.termlog( | |
f"Streaming LangChain activity to W&B at {run_url}\n" | |
"`WandbTracer` is currently in beta.\n" | |
"Please report any issues to " | |
"https://github.com/wandb/wandb/issues with the tag " | |
"`langchain`." | |
) | |
self._wandb.run._label(repo="langchain") | |
def _persist_run(self, run: "Run") -> None: | |
"""Persist a run.""" | |
self._log_trace_from_run(run) | |