File size: 6,553 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
"""Azure OpenAI embeddings wrapper."""

from __future__ import annotations

import os
from typing import Callable, Dict, Optional, Union

import openai
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env

from langchain_openai.embeddings.base import OpenAIEmbeddings


class AzureOpenAIEmbeddings(OpenAIEmbeddings):
    """`Azure OpenAI` Embeddings API.

    To use, you should have the
    environment variable ``AZURE_OPENAI_API_KEY`` set with your API key or pass it
    as a named parameter to the constructor.

    Example:
        .. code-block:: python

            from langchain_openai import AzureOpenAIEmbeddings

            openai = AzureOpenAIEmbeddings(model="text-embedding-3-large")
    """

    azure_endpoint: Union[str, None] = None
    """Your Azure endpoint, including the resource.

        Automatically inferred from env var `AZURE_OPENAI_ENDPOINT` if not provided.

        Example: `https://example-resource.azure.openai.com/`
    """
    deployment: Optional[str] = Field(default=None, alias="azure_deployment")
    """A model deployment.

        If given sets the base client URL to include `/deployments/{azure_deployment}`.
        Note: this means you won't be able to use non-deployment endpoints.
    """
    openai_api_key: Optional[SecretStr] = Field(default=None, alias="api_key")
    """Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided."""
    azure_ad_token: Optional[SecretStr] = None
    """Your Azure Active Directory token.

        Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided.

        For more:
        https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id.
    """
    azure_ad_token_provider: Union[Callable[[], str], None] = None
    """A function that returns an Azure Active Directory token.

        Will be invoked on every request.
    """
    openai_api_version: Optional[str] = Field(default=None, alias="api_version")
    """Automatically inferred from env var `OPENAI_API_VERSION` if not provided."""
    validate_base_url: bool = True
    chunk_size: int = 2048
    """Maximum number of texts to embed in each batch"""

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that api key and python package exists in environment."""
        # Check OPENAI_KEY for backwards compatibility.
        # TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using
        # other forms of azure credentials.
        openai_api_key = (
            values["openai_api_key"]
            or os.getenv("AZURE_OPENAI_API_KEY")
            or os.getenv("OPENAI_API_KEY")
        )
        values["openai_api_key"] = (
            convert_to_secret_str(openai_api_key) if openai_api_key else None
        )
        values["openai_api_base"] = values["openai_api_base"] or os.getenv(
            "OPENAI_API_BASE"
        )
        values["openai_api_version"] = values["openai_api_version"] or os.getenv(
            "OPENAI_API_VERSION", default="2023-05-15"
        )
        values["openai_api_type"] = get_from_dict_or_env(
            values, "openai_api_type", "OPENAI_API_TYPE", default="azure"
        )
        values["openai_organization"] = (
            values["openai_organization"]
            or os.getenv("OPENAI_ORG_ID")
            or os.getenv("OPENAI_ORGANIZATION")
        )
        values["openai_proxy"] = get_from_dict_or_env(
            values,
            "openai_proxy",
            "OPENAI_PROXY",
            default="",
        )
        values["azure_endpoint"] = values["azure_endpoint"] or os.getenv(
            "AZURE_OPENAI_ENDPOINT"
        )
        azure_ad_token = values["azure_ad_token"] or os.getenv("AZURE_OPENAI_AD_TOKEN")
        values["azure_ad_token"] = (
            convert_to_secret_str(azure_ad_token) if azure_ad_token else None
        )
        # For backwards compatibility. Before openai v1, no distinction was made
        # between azure_endpoint and base_url (openai_api_base).
        openai_api_base = values["openai_api_base"]
        if openai_api_base and values["validate_base_url"]:
            if "/openai" not in openai_api_base:
                values["openai_api_base"] += "/openai"
                raise ValueError(
                    "As of openai>=1.0.0, Azure endpoints should be specified via "
                    "the `azure_endpoint` param not `openai_api_base` "
                    "(or alias `base_url`). "
                )
            if values["deployment"]:
                raise ValueError(
                    "As of openai>=1.0.0, if `deployment` (or alias "
                    "`azure_deployment`) is specified then "
                    "`openai_api_base` (or alias `base_url`) should not be. "
                    "Instead use `deployment` (or alias `azure_deployment`) "
                    "and `azure_endpoint`."
                )
        client_params = {
            "api_version": values["openai_api_version"],
            "azure_endpoint": values["azure_endpoint"],
            "azure_deployment": values["deployment"],
            "api_key": (
                values["openai_api_key"].get_secret_value()
                if values["openai_api_key"]
                else None
            ),
            "azure_ad_token": (
                values["azure_ad_token"].get_secret_value()
                if values["azure_ad_token"]
                else None
            ),
            "azure_ad_token_provider": values["azure_ad_token_provider"],
            "organization": values["openai_organization"],
            "base_url": values["openai_api_base"],
            "timeout": values["request_timeout"],
            "max_retries": values["max_retries"],
            "default_headers": values["default_headers"],
            "default_query": values["default_query"],
        }
        if not values.get("client"):
            sync_specific = {"http_client": values["http_client"]}
            values["client"] = openai.AzureOpenAI(
                **client_params, **sync_specific
            ).embeddings
        if not values.get("async_client"):
            async_specific = {"http_client": values["http_async_client"]}
            values["async_client"] = openai.AsyncAzureOpenAI(
                **client_params, **async_specific
            ).embeddings
        return values

    @property
    def _llm_type(self) -> str:
        return "azure-openai-chat"