Spaces:
Running
Running
File size: 1,531 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
# langchain-exa
This package contains the LangChain integrations for Exa Cloud generative models.
## Installation
```bash
pip install -U langchain-exa
```
## Exa Search Retriever
You can retrieve search results as follows
```python
from langchain_exa import ExaSearchRetriever
exa_api_key = "YOUR API KEY"
# Create a new instance of the ExaSearchRetriever
exa = ExaSearchRetriever(exa_api_key=exa_api_key)
# Search for a query and save the results
results = exa.invoke("What is the capital of France?")
# Print the results
print(results)
```
## Exa Search Results
You can run the ExaSearchResults module as follows
```python
from langchain_exa import ExaSearchResults
# Initialize the ExaSearchResults tool
search_tool = ExaSearchResults(exa_api_key="YOUR API KEY")
# Perform a search query
search_results = search_tool._run(
query="When was the last time the New York Knicks won the NBA Championship?",
num_results=5,
text_contents_options=True,
highlights=True
)
print("Search Results:", search_results)
```
## Exa Find Similar Results
You can run the ExaFindSimilarResults module as follows
```python
from langchain_exa import ExaFindSimilarResults
# Initialize the ExaFindSimilarResults tool
find_similar_tool = ExaFindSimilarResults(exa_api_key="YOUR API KEY")
# Find similar results based on a URL
similar_results = find_similar_tool._run(
url="http://espn.com",
num_results=5,
text_contents_options=True,
highlights=True
)
print("Similar Results:", similar_results)
``` |