File size: 45,790 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
import json
import os
import re
import warnings
from operator import itemgetter
from typing import (
    Any,
    AsyncIterator,
    Callable,
    Dict,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Sequence,
    Tuple,
    Type,
    TypedDict,
    Union,
    cast,
)

import anthropic
from langchain_core._api import deprecated
from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import (
    BaseChatModel,
    LangSmithParams,
    agenerate_from_stream,
    generate_from_stream,
)
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    HumanMessage,
    SystemMessage,
    ToolCall,
    ToolMessage,
)
from langchain_core.messages.ai import UsageMetadata
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
from langchain_core.runnables import (
    Runnable,
    RunnableMap,
    RunnablePassthrough,
)
from langchain_core.tools import BaseTool
from langchain_core.utils import (
    build_extra_kwargs,
    convert_to_secret_str,
    get_pydantic_field_names,
)
from langchain_core.utils.function_calling import convert_to_openai_tool

from langchain_anthropic.output_parsers import ToolsOutputParser, extract_tool_calls

_message_type_lookups = {
    "human": "user",
    "ai": "assistant",
    "AIMessageChunk": "assistant",
    "HumanMessageChunk": "user",
}


def _format_image(image_url: str) -> Dict:
    """
    Formats an image of format data:image/jpeg;base64,{b64_string}
    to a dict for anthropic api

    {
      "type": "base64",
      "media_type": "image/jpeg",
      "data": "/9j/4AAQSkZJRg...",
    }

    And throws an error if it's not a b64 image
    """
    regex = r"^data:(?P<media_type>image/.+);base64,(?P<data>.+)$"
    match = re.match(regex, image_url)
    if match is None:
        raise ValueError(
            "Anthropic only supports base64-encoded images currently."
            " Example: data:image/png;base64,'/9j/4AAQSk'..."
        )
    return {
        "type": "base64",
        "media_type": match.group("media_type"),
        "data": match.group("data"),
    }


def _merge_messages(
    messages: Sequence[BaseMessage],
) -> List[Union[SystemMessage, AIMessage, HumanMessage]]:
    """Merge runs of human/tool messages into single human messages with content blocks."""  # noqa: E501
    merged: list = []
    for curr in messages:
        curr = curr.copy(deep=True)
        if isinstance(curr, ToolMessage):
            if isinstance(curr.content, str):
                curr = HumanMessage(  # type: ignore[misc]
                    [
                        {
                            "type": "tool_result",
                            "content": curr.content,
                            "tool_use_id": curr.tool_call_id,
                        }
                    ]
                )
            else:
                curr = HumanMessage(curr.content)  # type: ignore[misc]
        last = merged[-1] if merged else None
        if isinstance(last, HumanMessage) and isinstance(curr, HumanMessage):
            if isinstance(last.content, str):
                new_content: List = [{"type": "text", "text": last.content}]
            else:
                new_content = last.content
            if isinstance(curr.content, str):
                new_content.append({"type": "text", "text": curr.content})
            else:
                new_content.extend(curr.content)
            last.content = new_content
        else:
            merged.append(curr)
    return merged


def _format_messages(messages: List[BaseMessage]) -> Tuple[Optional[str], List[Dict]]:
    """Format messages for anthropic."""

    """
    [
                {
                    "role": _message_type_lookups[m.type],
                    "content": [_AnthropicMessageContent(text=m.content).dict()],
                }
                for m in messages
            ]
    """
    system: Optional[str] = None
    formatted_messages: List[Dict] = []

    merged_messages = _merge_messages(messages)
    for i, message in enumerate(merged_messages):
        if message.type == "system":
            if i != 0:
                raise ValueError("System message must be at beginning of message list.")
            if not isinstance(message.content, str):
                raise ValueError(
                    "System message must be a string, "
                    f"instead was: {type(message.content)}"
                )
            system = message.content
            continue

        role = _message_type_lookups[message.type]
        content: Union[str, List]

        if not isinstance(message.content, str):
            # parse as dict
            assert isinstance(
                message.content, list
            ), "Anthropic message content must be str or list of dicts"

            # populate content
            content = []
            for item in message.content:
                if isinstance(item, str):
                    content.append({"type": "text", "text": item})
                elif isinstance(item, dict):
                    if "type" not in item:
                        raise ValueError("Dict content item must have a type key")
                    elif item["type"] == "image_url":
                        # convert format
                        source = _format_image(item["image_url"]["url"])
                        content.append({"type": "image", "source": source})
                    elif item["type"] == "tool_use":
                        # If a tool_call with the same id as a tool_use content block
                        # exists, the tool_call is preferred.
                        if isinstance(message, AIMessage) and item["id"] in [
                            tc["id"] for tc in message.tool_calls
                        ]:
                            overlapping = [
                                tc
                                for tc in message.tool_calls
                                if tc["id"] == item["id"]
                            ]
                            content.extend(
                                _lc_tool_calls_to_anthropic_tool_use_blocks(overlapping)
                            )
                        else:
                            item.pop("text", None)
                            content.append(item)
                    elif item["type"] == "text":
                        text = item.get("text", "")
                        # Only add non-empty strings for now as empty ones are not
                        # accepted.
                        # https://github.com/anthropics/anthropic-sdk-python/issues/461
                        if text.strip():
                            content.append({"type": "text", "text": text})
                    else:
                        content.append(item)
                else:
                    raise ValueError(
                        f"Content items must be str or dict, instead was: {type(item)}"
                    )
        elif isinstance(message, AIMessage) and message.tool_calls:
            content = (
                []
                if not message.content
                else [{"type": "text", "text": message.content}]
            )
            # Note: Anthropic can't have invalid tool calls as presently defined,
            # since the model already returns dicts args not JSON strings, and invalid
            # tool calls are those with invalid JSON for args.
            content += _lc_tool_calls_to_anthropic_tool_use_blocks(message.tool_calls)
        else:
            content = message.content

        formatted_messages.append({"role": role, "content": content})
    return system, formatted_messages


class ChatAnthropic(BaseChatModel):
    """Anthropic chat model integration.

    See https://docs.anthropic.com/en/docs/models-overview for a list of the latest models.

    Setup:
        Install ``langchain-anthropic`` and set environment variable ``ANTHROPIC_API_KEY``.

        .. code-block:: bash

            pip install -U langchain-anthropic
            export ANTHROPIC_API_KEY="your-api-key"

    Key init args — completion params:
        model: str
            Name of Anthropic model to use. E.g. "claude-3-sonnet-20240229".
        temperature: float
            Sampling temperature. Ranges from 0.0 to 1.0.
        max_tokens: Optional[int]
            Max number of tokens to generate.

    Key init args — client params:
        timeout: Optional[float]
            Timeout for requests.
        max_retries: int
            Max number of retries if a request fails.
        api_key: Optional[str]
            Anthropic API key. If not passed in will be read from env var ANTHROPIC_API_KEY.
        base_url: Optional[str]
            Base URL for API requests. Only specify if using a proxy or service
            emulator.

    See full list of supported init args and their descriptions in the params section.

    Instantiate:
        .. code-block:: python

            from langchain_anthropic import ChatAnthropic

            llm = ChatAnthropic(
                model="claude-3-sonnet-20240229",
                temperature=0,
                max_tokens=1024,
                timeout=None,
                max_retries=2,
                # api_key="...",
                # base_url="...",
                # other params...
            )

    **NOTE**: Any param which is not explicitly supported will be passed directly to the
    ``anthropic.Anthropic.messages.create(...)`` API every time to the model is
    invoked. For example:
        .. code-block:: python

            from langchain_anthropic import ChatAnthropic
            import anthropic

            ChatAnthropic(..., extra_headers={}).invoke(...)

            # results in underlying API call of:

            anthropic.Anthropic(..).messages.create(..., extra_headers={})

            # which is also equivalent to:

            ChatAnthropic(...).invoke(..., extra_headers={})

    Invoke:
        .. code-block:: python

            messages = [
                ("system", "You are a helpful translator. Translate the user sentence to French."),
                ("human", "I love programming."),
            ]
            llm.invoke(messages)

        .. code-block:: python

            AIMessage(content="J'aime la programmation.", response_metadata={'id': 'msg_01Trik66aiQ9Z1higrD5XFx3', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 25, 'output_tokens': 11}}, id='run-5886ac5f-3c2e-49f5-8a44-b1e92808c929-0', usage_metadata={'input_tokens': 25, 'output_tokens': 11, 'total_tokens': 36})

    Stream:
        .. code-block:: python

            for chunk in llm.stream(messages):
                print(chunk)

        .. code-block:: python

            AIMessageChunk(content='J', id='run-272ff5f9-8485-402c-b90d-eac8babc5b25')
            AIMessageChunk(content="'", id='run-272ff5f9-8485-402c-b90d-eac8babc5b25')
            AIMessageChunk(content='a', id='run-272ff5f9-8485-402c-b90d-eac8babc5b25')
            AIMessageChunk(content='ime', id='run-272ff5f9-8485-402c-b90d-eac8babc5b25')
            AIMessageChunk(content=' la', id='run-272ff5f9-8485-402c-b90d-eac8babc5b25')
            AIMessageChunk(content=' programm', id='run-272ff5f9-8485-402c-b90d-eac8babc5b25')
            AIMessageChunk(content='ation', id='run-272ff5f9-8485-402c-b90d-eac8babc5b25')
            AIMessageChunk(content='.', id='run-272ff5f9-8485-402c-b90d-eac8babc5b25')

        .. code-block:: python

            stream = llm.stream(messages)
            full = next(stream)
            for chunk in stream:
                full += chunk
            full

        .. code-block:: python

            AIMessageChunk(content="J'aime la programmation.", id='run-b34faef0-882f-4869-a19c-ed2b856e6361')

    Async:
        .. code-block:: python

            await llm.ainvoke(messages)

            # stream:
            # async for chunk in (await llm.astream(messages))

            # batch:
            # await llm.abatch([messages])

        .. code-block:: python

            AIMessage(content="J'aime la programmation.", response_metadata={'id': 'msg_01Trik66aiQ9Z1higrD5XFx3', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 25, 'output_tokens': 11}}, id='run-5886ac5f-3c2e-49f5-8a44-b1e92808c929-0', usage_metadata={'input_tokens': 25, 'output_tokens': 11, 'total_tokens': 36})

    Tool calling:
        .. code-block:: python

            from langchain_core.pydantic_v1 import BaseModel, Field

            class GetWeather(BaseModel):
                '''Get the current weather in a given location'''

                location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

            class GetPopulation(BaseModel):
                '''Get the current population in a given location'''

                location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

            llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])
            ai_msg = llm_with_tools.invoke("Which city is hotter today and which is bigger: LA or NY?")
            ai_msg.tool_calls

        .. code-block:: python

            [{'name': 'GetWeather',
              'args': {'location': 'Los Angeles, CA'},
              'id': 'toolu_01KzpPEAgzura7hpBqwHbWdo'},
             {'name': 'GetWeather',
              'args': {'location': 'New York, NY'},
              'id': 'toolu_01JtgbVGVJbiSwtZk3Uycezx'},
             {'name': 'GetPopulation',
              'args': {'location': 'Los Angeles, CA'},
              'id': 'toolu_01429aygngesudV9nTbCKGuw'},
             {'name': 'GetPopulation',
              'args': {'location': 'New York, NY'},
              'id': 'toolu_01JPktyd44tVMeBcPPnFSEJG'}]

        See ``ChatAnthropic.bind_tools()`` method for more.

    Structured output:
        .. code-block:: python

            from typing import Optional

            from langchain_core.pydantic_v1 import BaseModel, Field

            class Joke(BaseModel):
                '''Joke to tell user.'''

                setup: str = Field(description="The setup of the joke")
                punchline: str = Field(description="The punchline to the joke")
                rating: Optional[int] = Field(description="How funny the joke is, from 1 to 10")

            structured_llm = llm.with_structured_output(Joke)
            structured_llm.invoke("Tell me a joke about cats")

        .. code-block:: python

            Joke(setup='Why was the cat sitting on the computer?', punchline='To keep an eye on the mouse!', rating=None)

        See ``ChatAnthropic.with_structured_output()`` for more.

    Image input:
        .. code-block:: python

            import base64
            import httpx
            from langchain_core.messages import HumanMessage

            image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
            image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")
            message = HumanMessage(
                content=[
                    {"type": "text", "text": "describe the weather in this image"},
                    {
                        "type": "image_url",
                        "image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
                    },
                ],
            )
            ai_msg = llm.invoke([message])
            ai_msg.content

        .. code-block:: python

            "The image depicts a sunny day with a partly cloudy sky. The sky is a brilliant blue color with scattered white clouds drifting across. The lighting and cloud patterns suggest pleasant, mild weather conditions. The scene shows a grassy field or meadow with a wooden boardwalk trail leading through it, indicating an outdoor setting on a nice day well-suited for enjoying nature."

    Token usage:
        .. code-block:: python

            ai_msg = llm.invoke(messages)
            ai_msg.usage_metadata

        .. code-block:: python

            {'input_tokens': 25, 'output_tokens': 11, 'total_tokens': 36}

        Message chunks containing token usage will be included during streaming by
        default:

        .. code-block:: python

            stream = llm.stream(messages)
            full = next(stream)
            for chunk in stream:
                full += chunk
            full.usage_metadata

        .. code-block:: python

            {'input_tokens': 25, 'output_tokens': 11, 'total_tokens': 36}

        These can be disabled by setting ``stream_usage=False`` in the stream method,
        or by setting ``stream_usage=False`` when initializing ChatAnthropic.

    Response metadata
        .. code-block:: python

            ai_msg = llm.invoke(messages)
            ai_msg.response_metadata

        .. code-block:: python

            {'id': 'msg_013xU6FHEGEq76aP4RgFerVT',
             'model': 'claude-3-sonnet-20240229',
             'stop_reason': 'end_turn',
             'stop_sequence': None,
             'usage': {'input_tokens': 25, 'output_tokens': 11}}

    """  # noqa: E501

    class Config:
        """Configuration for this pydantic object."""

        allow_population_by_field_name = True

    _client: anthropic.Client = Field(default=None)
    _async_client: anthropic.AsyncClient = Field(default=None)

    model: str = Field(alias="model_name")
    """Model name to use."""

    max_tokens: int = Field(default=1024, alias="max_tokens_to_sample")
    """Denotes the number of tokens to predict per generation."""

    temperature: Optional[float] = None
    """A non-negative float that tunes the degree of randomness in generation."""

    top_k: Optional[int] = None
    """Number of most likely tokens to consider at each step."""

    top_p: Optional[float] = None
    """Total probability mass of tokens to consider at each step."""

    default_request_timeout: Optional[float] = Field(None, alias="timeout")
    """Timeout for requests to Anthropic Completion API."""

    # sdk default = 2: https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#retries
    max_retries: int = 2
    """Number of retries allowed for requests sent to the Anthropic Completion API."""

    stop_sequences: Optional[List[str]] = Field(None, alias="stop")
    """Default stop sequences."""

    anthropic_api_url: Optional[str] = Field(None, alias="base_url")
    """Base URL for API requests. Only specify if using a proxy or service emulator.
    
    If a value isn't passed in and environment variable ANTHROPIC_BASE_URL is set, value
    will be read from there.
    """

    anthropic_api_key: Optional[SecretStr] = Field(None, alias="api_key")
    """Automatically read from env var `ANTHROPIC_API_KEY` if not provided."""

    default_headers: Optional[Mapping[str, str]] = None
    """Headers to pass to the Anthropic clients, will be used for every API call."""

    model_kwargs: Dict[str, Any] = Field(default_factory=dict)

    streaming: bool = False
    """Whether to use streaming or not."""

    stream_usage: bool = True
    """Whether to include usage metadata in streaming output. If True, additional
    message chunks will be generated during the stream including usage metadata.
    """

    @property
    def _llm_type(self) -> str:
        """Return type of chat model."""
        return "anthropic-chat"

    @property
    def lc_secrets(self) -> Dict[str, str]:
        return {"anthropic_api_key": "ANTHROPIC_API_KEY"}

    @classmethod
    def is_lc_serializable(cls) -> bool:
        return True

    @classmethod
    def get_lc_namespace(cls) -> List[str]:
        """Get the namespace of the langchain object."""
        return ["langchain", "chat_models", "anthropic"]

    @property
    def _identifying_params(self) -> Dict[str, Any]:
        """Get the identifying parameters."""
        return {
            "model": self.model,
            "max_tokens": self.max_tokens,
            "temperature": self.temperature,
            "top_k": self.top_k,
            "top_p": self.top_p,
            "model_kwargs": self.model_kwargs,
            "streaming": self.streaming,
            "max_retries": self.max_retries,
            "default_request_timeout": self.default_request_timeout,
        }

    def _get_ls_params(
        self, stop: Optional[List[str]] = None, **kwargs: Any
    ) -> LangSmithParams:
        """Get the parameters used to invoke the model."""
        params = self._get_invocation_params(stop=stop, **kwargs)
        ls_params = LangSmithParams(
            ls_provider="anthropic",
            ls_model_name=self.model,
            ls_model_type="chat",
            ls_temperature=params.get("temperature", self.temperature),
        )
        if ls_max_tokens := params.get("max_tokens", self.max_tokens):
            ls_params["ls_max_tokens"] = ls_max_tokens
        if ls_stop := stop or params.get("stop", None):
            ls_params["ls_stop"] = ls_stop
        return ls_params

    @root_validator(pre=True)
    def build_extra(cls, values: Dict) -> Dict:
        extra = values.get("model_kwargs", {})
        all_required_field_names = get_pydantic_field_names(cls)
        values["model_kwargs"] = build_extra_kwargs(
            extra, values, all_required_field_names
        )
        return values

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        anthropic_api_key = convert_to_secret_str(
            values.get("anthropic_api_key") or os.environ.get("ANTHROPIC_API_KEY") or ""
        )
        values["anthropic_api_key"] = anthropic_api_key
        api_key = anthropic_api_key.get_secret_value()
        api_url = (
            values.get("anthropic_api_url")
            or os.environ.get("ANTHROPIC_API_URL")
            or os.environ.get("ANTHROPIC_BASE_URL")
            or "https://api.anthropic.com"
        )
        values["anthropic_api_url"] = api_url
        client_params = {
            "api_key": api_key,
            "base_url": api_url,
            "max_retries": values["max_retries"],
            "default_headers": values.get("default_headers"),
        }
        # value <= 0 indicates the param should be ignored. None is a meaningful value
        # for Anthropic client and treated differently than not specifying the param at
        # all.
        if (
            values["default_request_timeout"] is None
            or values["default_request_timeout"] > 0
        ):
            client_params["timeout"] = values["default_request_timeout"]

        values["_client"] = anthropic.Client(**client_params)
        values["_async_client"] = anthropic.AsyncClient(**client_params)
        return values

    def _format_params(
        self,
        *,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        **kwargs: Dict,
    ) -> Dict:
        # get system prompt if any
        system, formatted_messages = _format_messages(messages)
        stop_sequences = stop or self.stop_sequences
        rtn = {
            "model": self.model,
            "max_tokens": self.max_tokens,
            "messages": formatted_messages,
            "temperature": self.temperature,
            "top_k": self.top_k,
            "top_p": self.top_p,
            "stop_sequences": stop_sequences,
            "system": system,
            **self.model_kwargs,
            **kwargs,
        }
        rtn = {k: v for k, v in rtn.items() if v is not None}

        return rtn

    def _stream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        *,
        stream_usage: Optional[bool] = None,
        **kwargs: Any,
    ) -> Iterator[ChatGenerationChunk]:
        if stream_usage is None:
            stream_usage = self.stream_usage
        params = self._format_params(messages=messages, stop=stop, **kwargs)
        if _tools_in_params(params):
            result = self._generate(
                messages, stop=stop, run_manager=run_manager, **kwargs
            )
            message = result.generations[0].message
            if isinstance(message, AIMessage) and message.tool_calls is not None:
                tool_call_chunks = [
                    {
                        "name": tool_call["name"],
                        "args": json.dumps(tool_call["args"]),
                        "id": tool_call["id"],
                        "index": idx,
                    }
                    for idx, tool_call in enumerate(message.tool_calls)
                ]
                message_chunk = AIMessageChunk(
                    content=message.content,
                    tool_call_chunks=tool_call_chunks,  # type: ignore[arg-type]
                    usage_metadata=message.usage_metadata,
                )
                yield ChatGenerationChunk(message=message_chunk)
            else:
                yield cast(ChatGenerationChunk, result.generations[0])
            return
        stream = self._client.messages.create(**params, stream=True)
        for event in stream:
            msg = _make_message_chunk_from_anthropic_event(
                event, stream_usage=stream_usage
            )
            if msg is not None:
                chunk = ChatGenerationChunk(message=msg)
                if run_manager and isinstance(msg.content, str):
                    run_manager.on_llm_new_token(msg.content, chunk=chunk)
                yield chunk

    async def _astream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        *,
        stream_usage: Optional[bool] = None,
        **kwargs: Any,
    ) -> AsyncIterator[ChatGenerationChunk]:
        if stream_usage is None:
            stream_usage = self.stream_usage
        params = self._format_params(messages=messages, stop=stop, **kwargs)
        if _tools_in_params(params):
            warnings.warn("stream: Tool use is not yet supported in streaming mode.")
            result = await self._agenerate(
                messages, stop=stop, run_manager=run_manager, **kwargs
            )
            message = result.generations[0].message
            if isinstance(message, AIMessage) and message.tool_calls is not None:
                tool_call_chunks = [
                    {
                        "name": tool_call["name"],
                        "args": json.dumps(tool_call["args"]),
                        "id": tool_call["id"],
                        "index": idx,
                    }
                    for idx, tool_call in enumerate(message.tool_calls)
                ]
                message_chunk = AIMessageChunk(
                    content=message.content,
                    tool_call_chunks=tool_call_chunks,  # type: ignore[arg-type]
                    usage_metadata=message.usage_metadata,
                )
                yield ChatGenerationChunk(message=message_chunk)
            else:
                yield cast(ChatGenerationChunk, result.generations[0])
            return
        stream = await self._async_client.messages.create(**params, stream=True)
        async for event in stream:
            msg = _make_message_chunk_from_anthropic_event(
                event, stream_usage=stream_usage
            )
            if msg is not None:
                chunk = ChatGenerationChunk(message=msg)
                if run_manager and isinstance(msg.content, str):
                    await run_manager.on_llm_new_token(msg.content, chunk=chunk)
                yield chunk

    def _format_output(self, data: Any, **kwargs: Any) -> ChatResult:
        data_dict = data.model_dump()
        content = data_dict["content"]
        llm_output = {
            k: v for k, v in data_dict.items() if k not in ("content", "role", "type")
        }
        if len(content) == 1 and content[0]["type"] == "text":
            msg = AIMessage(content=content[0]["text"])
        elif any(block["type"] == "tool_use" for block in content):
            tool_calls = extract_tool_calls(content)
            msg = AIMessage(
                content=content,
                tool_calls=tool_calls,
            )
        else:
            msg = AIMessage(content=content)
        # Collect token usage
        msg.usage_metadata = {
            "input_tokens": data.usage.input_tokens,
            "output_tokens": data.usage.output_tokens,
            "total_tokens": data.usage.input_tokens + data.usage.output_tokens,
        }
        return ChatResult(
            generations=[ChatGeneration(message=msg)],
            llm_output=llm_output,
        )

    def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        params = self._format_params(messages=messages, stop=stop, **kwargs)
        if self.streaming:
            if _tools_in_params(params):
                warnings.warn(
                    "stream: Tool use is not yet supported in streaming mode."
                )
            else:
                stream_iter = self._stream(
                    messages, stop=stop, run_manager=run_manager, **kwargs
                )
                return generate_from_stream(stream_iter)
        data = self._client.messages.create(**params)
        return self._format_output(data, **kwargs)

    async def _agenerate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        params = self._format_params(messages=messages, stop=stop, **kwargs)
        if self.streaming:
            if _tools_in_params(params):
                warnings.warn(
                    "stream: Tool use is not yet supported in streaming mode."
                )
            else:
                stream_iter = self._astream(
                    messages, stop=stop, run_manager=run_manager, **kwargs
                )
                return await agenerate_from_stream(stream_iter)
        data = await self._async_client.messages.create(**params)
        return self._format_output(data, **kwargs)

    def bind_tools(
        self,
        tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
        *,
        tool_choice: Optional[
            Union[Dict[str, str], Literal["any", "auto"], str]
        ] = None,
        **kwargs: Any,
    ) -> Runnable[LanguageModelInput, BaseMessage]:
        """Bind tool-like objects to this chat model.

        Args:
            tools: A list of tool definitions to bind to this chat model.
                Can be  a dictionary, pydantic model, callable, or BaseTool. Pydantic
                models, callables, and BaseTools will be automatically converted to
                their schema dictionary representation.
            tool_choice: Which tool to require the model to call.
                Options are:
                    name of the tool (str): calls corresponding tool;
                    "auto" or None: automatically selects a tool (including no tool);
                    "any": force at least one tool to be called;
                    or a dict of the form:
                        {"type": "tool", "name": "tool_name"},
                        or {"type: "any"},
                        or {"type: "auto"};
            **kwargs: Any additional parameters to bind.

        Example:
            .. code-block:: python

                from langchain_anthropic import ChatAnthropic
                from langchain_core.pydantic_v1 import BaseModel, Field

                class GetWeather(BaseModel):
                    '''Get the current weather in a given location'''

                    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

                class GetPrice(BaseModel):
                    '''Get the price of a specific product.'''

                    product: str = Field(..., description="The product to look up.")


                llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0)
                llm_with_tools = llm.bind_tools([GetWeather, GetPrice])
                llm_with_tools.invoke("what is the weather like in San Francisco",)
                # -> AIMessage(
                #     content=[
                #         {'text': '<thinking>\nBased on the user\'s question, the relevant function to call is GetWeather, which requires the "location" parameter.\n\nThe user has directly specified the location as "San Francisco". Since San Francisco is a well known city, I can reasonably infer they mean San Francisco, CA without needing the state specified.\n\nAll the required parameters are provided, so I can proceed with the API call.\n</thinking>', 'type': 'text'},
                #         {'text': None, 'type': 'tool_use', 'id': 'toolu_01SCgExKzQ7eqSkMHfygvYuu', 'name': 'GetWeather', 'input': {'location': 'San Francisco, CA'}}
                #     ],
                #     response_metadata={'id': 'msg_01GM3zQtoFv8jGQMW7abLnhi', 'model': 'claude-3-opus-20240229', 'stop_reason': 'tool_use', 'stop_sequence': None, 'usage': {'input_tokens': 487, 'output_tokens': 145}},
                #     id='run-87b1331e-9251-4a68-acef-f0a018b639cc-0'
                # )

        Example — force tool call with tool_choice 'any':
            .. code-block:: python

                from langchain_anthropic import ChatAnthropic
                from langchain_core.pydantic_v1 import BaseModel, Field

                class GetWeather(BaseModel):
                    '''Get the current weather in a given location'''

                    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

                class GetPrice(BaseModel):
                    '''Get the price of a specific product.'''

                    product: str = Field(..., description="The product to look up.")


                llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0)
                llm_with_tools = llm.bind_tools([GetWeather, GetPrice], tool_choice="any")
                llm_with_tools.invoke("what is the weather like in San Francisco",)


        Example — force specific tool call with tool_choice '<name_of_tool>':
            .. code-block:: python

                from langchain_anthropic import ChatAnthropic
                from langchain_core.pydantic_v1 import BaseModel, Field

                class GetWeather(BaseModel):
                    '''Get the current weather in a given location'''

                    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

                class GetPrice(BaseModel):
                    '''Get the price of a specific product.'''

                    product: str = Field(..., description="The product to look up.")


                llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0)
                llm_with_tools = llm.bind_tools([GetWeather, GetPrice], tool_choice="GetWeather")
                llm_with_tools.invoke("what is the weather like in San Francisco",)
        """  # noqa: E501
        formatted_tools = [convert_to_anthropic_tool(tool) for tool in tools]
        if not tool_choice:
            pass
        elif isinstance(tool_choice, dict):
            kwargs["tool_choice"] = tool_choice
        elif isinstance(tool_choice, str) and tool_choice in ("any", "auto"):
            kwargs["tool_choice"] = {"type": tool_choice}
        elif isinstance(tool_choice, str):
            kwargs["tool_choice"] = {"type": "tool", "name": tool_choice}
        else:
            raise ValueError(
                f"Unrecognized 'tool_choice' type {tool_choice=}. Expected dict, "
                f"str, or None."
            )
        return self.bind(tools=formatted_tools, **kwargs)

    def with_structured_output(
        self,
        schema: Union[Dict, Type[BaseModel]],
        *,
        include_raw: bool = False,
        **kwargs: Any,
    ) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
        """Model wrapper that returns outputs formatted to match the given schema.

        Args:
            schema: The output schema as a dict or a Pydantic class. If a Pydantic class
                then the model output will be an object of that class. If a dict then
                the model output will be a dict. With a Pydantic class the returned
                attributes will be validated, whereas with a dict they will not be.
            include_raw: If False then only the parsed structured output is returned. If
                an error occurs during model output parsing it will be raised. If True
                then both the raw model response (a BaseMessage) and the parsed model
                response will be returned. If an error occurs during output parsing it
                will be caught and returned as well. The final output is always a dict
                with keys "raw", "parsed", and "parsing_error".

        Returns:
            A Runnable that takes any ChatModel input. The output type depends on
            include_raw and schema.

            If include_raw is True then output is a dict with keys:
                raw: BaseMessage,
                parsed: Optional[_DictOrPydantic],
                parsing_error: Optional[BaseException],

            If include_raw is False and schema is a Dict then the runnable outputs a Dict.
            If include_raw is False and schema is a Type[BaseModel] then the runnable
            outputs a BaseModel.

        Example: Pydantic schema (include_raw=False):
            .. code-block:: python

                from langchain_anthropic import ChatAnthropic
                from langchain_core.pydantic_v1 import BaseModel

                class AnswerWithJustification(BaseModel):
                    '''An answer to the user question along with justification for the answer.'''
                    answer: str
                    justification: str

                llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0)
                structured_llm = llm.with_structured_output(AnswerWithJustification)

                structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")

                # -> AnswerWithJustification(
                #     answer='They weigh the same',
                #     justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
                # )

        Example:  Pydantic schema (include_raw=True):
            .. code-block:: python

                from langchain_anthropic import ChatAnthropic
                from langchain_core.pydantic_v1 import BaseModel

                class AnswerWithJustification(BaseModel):
                    '''An answer to the user question along with justification for the answer.'''
                    answer: str
                    justification: str

                llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0)
                structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True)

                structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
                # -> {
                #     'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
                #     'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
                #     'parsing_error': None
                # }

        Example: Dict schema (include_raw=False):
            .. code-block:: python

                from langchain_anthropic import ChatAnthropic

                schema = {
                    "name": "AnswerWithJustification",
                    "description": "An answer to the user question along with justification for the answer.",
                    "input_schema": {
                        "type": "object",
                        "properties": {
                            "answer": {"type": "string"},
                            "justification": {"type": "string"},
                        },
                        "required": ["answer", "justification"]
                    }
                }
                llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0)
                structured_llm = llm.with_structured_output(schema)

                structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
                # -> {
                #     'answer': 'They weigh the same',
                #     'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
                # }

        """  # noqa: E501
        llm = self.bind_tools([schema], tool_choice="any")
        if isinstance(schema, type) and issubclass(schema, BaseModel):
            output_parser = ToolsOutputParser(
                first_tool_only=True, pydantic_schemas=[schema]
            )
        else:
            output_parser = ToolsOutputParser(first_tool_only=True, args_only=True)

        if include_raw:
            parser_assign = RunnablePassthrough.assign(
                parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
            )
            parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
            parser_with_fallback = parser_assign.with_fallbacks(
                [parser_none], exception_key="parsing_error"
            )
            return RunnableMap(raw=llm) | parser_with_fallback
        else:
            return llm | output_parser


class AnthropicTool(TypedDict):
    name: str
    description: str
    input_schema: Dict[str, Any]


def convert_to_anthropic_tool(
    tool: Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool],
) -> AnthropicTool:
    # already in Anthropic tool format
    if isinstance(tool, dict) and all(
        k in tool for k in ("name", "description", "input_schema")
    ):
        return AnthropicTool(tool)  # type: ignore
    else:
        formatted = convert_to_openai_tool(tool)["function"]
        return AnthropicTool(
            name=formatted["name"],
            description=formatted["description"],
            input_schema=formatted["parameters"],
        )


def _tools_in_params(params: dict) -> bool:
    return "tools" in params or (
        "extra_body" in params and params["extra_body"].get("tools")
    )


class _AnthropicToolUse(TypedDict):
    type: Literal["tool_use"]
    name: str
    input: dict
    id: str


def _lc_tool_calls_to_anthropic_tool_use_blocks(
    tool_calls: List[ToolCall],
) -> List[_AnthropicToolUse]:
    blocks = []
    for tool_call in tool_calls:
        blocks.append(
            _AnthropicToolUse(
                type="tool_use",
                name=tool_call["name"],
                input=tool_call["args"],
                id=cast(str, tool_call["id"]),
            )
        )
    return blocks


def _make_message_chunk_from_anthropic_event(
    event: anthropic.types.RawMessageStreamEvent,
    *,
    stream_usage: bool = True,
) -> Optional[AIMessageChunk]:
    """Convert Anthropic event to AIMessageChunk.

    Note that not all events will result in a message chunk. In these cases
    we return None.
    """
    message_chunk: Optional[AIMessageChunk] = None
    if event.type == "message_start" and stream_usage:
        input_tokens = event.message.usage.input_tokens
        message_chunk = AIMessageChunk(
            content="",
            usage_metadata=UsageMetadata(
                input_tokens=input_tokens,
                output_tokens=0,
                total_tokens=input_tokens,
            ),
        )
    # See https://github.com/anthropics/anthropic-sdk-python/blob/main/src/anthropic/lib/streaming/_messages.py  # noqa: E501
    elif event.type == "content_block_delta" and event.delta.type == "text_delta":
        text = event.delta.text
        message_chunk = AIMessageChunk(content=text)
    elif event.type == "message_delta" and stream_usage:
        output_tokens = event.usage.output_tokens
        message_chunk = AIMessageChunk(
            content="",
            usage_metadata=UsageMetadata(
                input_tokens=0,
                output_tokens=output_tokens,
                total_tokens=output_tokens,
            ),
        )
    else:
        pass

    return message_chunk


@deprecated(since="0.1.0", removal="0.3.0", alternative="ChatAnthropic")
class ChatAnthropicMessages(ChatAnthropic):
    pass