Spaces:
Runtime error
Runtime error
File size: 5,843 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import os
from contextlib import contextmanager
from typing import Generator
from unittest.mock import Mock
import pytest
from ai21 import AI21Client
from ai21.models import (
AnswerResponse,
ChatOutput,
ChatResponse,
Completion,
CompletionData,
CompletionFinishReason,
CompletionsResponse,
FinishReason,
Penalty,
RoleType,
SegmentationResponse,
)
from ai21.models.responses.segmentation_response import Segment
from pytest_mock import MockerFixture
J2_CHAT_MODEL_NAME = "j2-ultra"
JAMBA_CHAT_MODEL_NAME = "jamba-instruct-preview"
DUMMY_API_KEY = "test_api_key"
BASIC_EXAMPLE_LLM_PARAMETERS = {
"num_results": 3,
"max_tokens": 20,
"min_tokens": 10,
"temperature": 0.5,
"top_p": 0.5,
"top_k_return": 0,
"frequency_penalty": Penalty(scale=0.2, apply_to_numbers=True),
"presence_penalty": Penalty(scale=0.2, apply_to_stopwords=True),
"count_penalty": Penalty(
scale=0.2,
apply_to_punctuation=True,
apply_to_emojis=True,
),
}
BASIC_EXAMPLE_CHAT_PARAMETERS = {
"num_results": 3,
"max_tokens": 20,
"min_tokens": 10,
"temperature": 0.5,
"top_p": 0.5,
"top_k_return": 0,
"frequency_penalty": Penalty(scale=0.2, apply_to_numbers=True),
"presence_penalty": Penalty(scale=0.2, apply_to_stopwords=True),
"count_penalty": Penalty(
scale=0.2,
apply_to_punctuation=True,
apply_to_emojis=True,
),
"n": 3,
}
SEGMENTS = [
Segment(
segment_type="normal_text",
segment_text=(
"The original full name of the franchise is Pocket Monsters "
"(ポケットモンスター, Poketto Monsutā), which was abbreviated to "
"Pokemon during development of the original games.\n\nWhen the "
"franchise was released internationally, the short form of the "
"title was used, with an acute accent (´) over the e to aid "
"in pronunciation."
),
),
Segment(
segment_type="normal_text",
segment_text=(
"Pokémon refers to both the franchise itself and the creatures "
"within its fictional universe.\n\nAs a noun, it is identical in "
"both the singular and plural, as is every individual species "
'name;[10] it is grammatically correct to say "one Pokémon" '
'and "many Pokémon", as well as "one Pikachu" and "many '
'Pikachu".\n\nIn English, Pokémon may be pronounced either '
"/'powkɛmon/ (poe-keh-mon) or /'powkɪmon/ (poe-key-mon)."
),
),
]
BASIC_EXAMPLE_LLM_PARAMETERS_AS_DICT = {
"num_results": 3,
"max_tokens": 20,
"min_tokens": 10,
"temperature": 0.5,
"top_p": 0.5,
"top_k_return": 0,
"frequency_penalty": Penalty(scale=0.2, apply_to_numbers=True).to_dict(),
"presence_penalty": Penalty(scale=0.2, apply_to_stopwords=True).to_dict(),
"count_penalty": Penalty(
scale=0.2,
apply_to_punctuation=True,
apply_to_emojis=True,
).to_dict(),
}
BASIC_EXAMPLE_CHAT_PARAMETERS_AS_DICT = {
"num_results": 3,
"max_tokens": 20,
"min_tokens": 10,
"temperature": 0.5,
"top_p": 0.5,
"top_k_return": 0,
"frequency_penalty": Penalty(scale=0.2, apply_to_numbers=True).to_dict(),
"presence_penalty": Penalty(scale=0.2, apply_to_stopwords=True).to_dict(),
"count_penalty": Penalty(
scale=0.2,
apply_to_punctuation=True,
apply_to_emojis=True,
).to_dict(),
"n": 3,
}
@pytest.fixture
def mocked_completion_response(mocker: MockerFixture) -> Mock:
mocked_response = mocker.MagicMock(spec=CompletionsResponse)
mocked_response.prompt = "this is a test prompt"
mocked_response.completions = [
Completion(
data=CompletionData(text="test", tokens=[]),
finish_reason=CompletionFinishReason(reason=None, length=None),
)
]
return mocked_response
@pytest.fixture
def mock_client_with_completion(
mocker: MockerFixture, mocked_completion_response: Mock
) -> Mock:
mock_client = mocker.MagicMock(spec=AI21Client)
mock_client.completion = mocker.MagicMock()
mock_client.completion.create.side_effect = [
mocked_completion_response,
mocked_completion_response,
]
mock_client.count_tokens.side_effect = [10, 20]
return mock_client
@pytest.fixture
def mock_client_with_chat(mocker: MockerFixture) -> Mock:
mock_client = mocker.MagicMock(spec=AI21Client)
mock_client.chat = mocker.MagicMock()
output = ChatOutput(
text="Hello Pickle Rick!",
role=RoleType.ASSISTANT,
finish_reason=FinishReason(reason="testing"),
)
mock_client.chat.create.return_value = ChatResponse(outputs=[output])
return mock_client
@contextmanager
def temporarily_unset_api_key() -> Generator:
"""
Unset and set environment key for testing purpose for when an API KEY is not set
"""
api_key = os.environ.pop("AI21_API_KEY", None)
yield
if api_key is not None:
os.environ["AI21_API_KEY"] = api_key
@pytest.fixture
def mock_client_with_contextual_answers(mocker: MockerFixture) -> Mock:
mock_client = mocker.MagicMock(spec=AI21Client)
mock_client.answer = mocker.MagicMock()
mock_client.answer.create.return_value = AnswerResponse(
id="some_id",
answer="some answer",
answer_in_context=False,
)
return mock_client
@pytest.fixture
def mock_client_with_semantic_text_splitter(mocker: MockerFixture) -> Mock:
mock_client = mocker.MagicMock(spec=AI21Client)
mock_client.segmentation = mocker.MagicMock()
mock_client.segmentation.create.return_value = SegmentationResponse(
id="12345",
segments=SEGMENTS,
)
return mock_client
|