Spaces:
Runtime error
Runtime error
File size: 11,659 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
from __future__ import annotations
import logging
from functools import cached_property
from typing import TYPE_CHECKING, Any, AsyncIterator, Dict, Iterator, List, Optional
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.llms import BaseLLM
from langchain_core.load.serializable import Serializable
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
from langchain_core.pydantic_v1 import root_validator
if TYPE_CHECKING:
import gigachat
import gigachat.models as gm
logger = logging.getLogger(__name__)
class _BaseGigaChat(Serializable):
base_url: Optional[str] = None
""" Base API URL """
auth_url: Optional[str] = None
""" Auth URL """
credentials: Optional[str] = None
""" Auth Token """
scope: Optional[str] = None
""" Permission scope for access token """
access_token: Optional[str] = None
""" Access token for GigaChat """
model: Optional[str] = None
"""Model name to use."""
user: Optional[str] = None
""" Username for authenticate """
password: Optional[str] = None
""" Password for authenticate """
timeout: Optional[float] = None
""" Timeout for request """
verify_ssl_certs: Optional[bool] = None
""" Check certificates for all requests """
ca_bundle_file: Optional[str] = None
cert_file: Optional[str] = None
key_file: Optional[str] = None
key_file_password: Optional[str] = None
# Support for connection to GigaChat through SSL certificates
profanity: bool = True
""" DEPRECATED: Check for profanity """
profanity_check: Optional[bool] = None
""" Check for profanity """
streaming: bool = False
""" Whether to stream the results or not. """
temperature: Optional[float] = None
""" What sampling temperature to use. """
max_tokens: Optional[int] = None
""" Maximum number of tokens to generate """
use_api_for_tokens: bool = False
""" Use GigaChat API for tokens count """
verbose: bool = False
""" Verbose logging """
top_p: Optional[float] = None
""" top_p value to use for nucleus sampling. Must be between 0.0 and 1.0 """
repetition_penalty: Optional[float] = None
""" The penalty applied to repeated tokens """
update_interval: Optional[float] = None
""" Minimum interval in seconds that elapses between sending tokens """
@property
def _llm_type(self) -> str:
return "giga-chat-model"
@property
def lc_secrets(self) -> Dict[str, str]:
return {
"credentials": "GIGACHAT_CREDENTIALS",
"access_token": "GIGACHAT_ACCESS_TOKEN",
"password": "GIGACHAT_PASSWORD",
"key_file_password": "GIGACHAT_KEY_FILE_PASSWORD",
}
@property
def lc_serializable(self) -> bool:
return True
@cached_property
def _client(self) -> gigachat.GigaChat:
"""Returns GigaChat API client"""
import gigachat
return gigachat.GigaChat(
base_url=self.base_url,
auth_url=self.auth_url,
credentials=self.credentials,
scope=self.scope,
access_token=self.access_token,
model=self.model,
profanity_check=self.profanity_check,
user=self.user,
password=self.password,
timeout=self.timeout,
verify_ssl_certs=self.verify_ssl_certs,
ca_bundle_file=self.ca_bundle_file,
cert_file=self.cert_file,
key_file=self.key_file,
key_file_password=self.key_file_password,
verbose=self.verbose,
)
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate authenticate data in environment and python package is installed."""
try:
import gigachat # noqa: F401
except ImportError:
raise ImportError(
"Could not import gigachat python package. "
"Please install it with `pip install gigachat`."
)
fields = set(cls.__fields__.keys())
diff = set(values.keys()) - fields
if diff:
logger.warning(f"Extra fields {diff} in GigaChat class")
if "profanity" in fields and values.get("profanity") is False:
logger.warning(
"'profanity' field is deprecated. Use 'profanity_check' instead."
)
if values.get("profanity_check") is None:
values["profanity_check"] = values.get("profanity")
return values
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {
"temperature": self.temperature,
"model": self.model,
"profanity": self.profanity_check,
"streaming": self.streaming,
"max_tokens": self.max_tokens,
"top_p": self.top_p,
"repetition_penalty": self.repetition_penalty,
}
def tokens_count(
self, input_: List[str], model: Optional[str] = None
) -> List[gm.TokensCount]:
"""Get tokens of string list"""
return self._client.tokens_count(input_, model)
async def atokens_count(
self, input_: List[str], model: Optional[str] = None
) -> List[gm.TokensCount]:
"""Get tokens of strings list (async)"""
return await self._client.atokens_count(input_, model)
def get_models(self) -> gm.Models:
"""Get available models of Gigachat"""
return self._client.get_models()
async def aget_models(self) -> gm.Models:
"""Get available models of Gigachat (async)"""
return await self._client.aget_models()
def get_model(self, model: str) -> gm.Model:
"""Get info about model"""
return self._client.get_model(model)
async def aget_model(self, model: str) -> gm.Model:
"""Get info about model (async)"""
return await self._client.aget_model(model)
def get_num_tokens(self, text: str) -> int:
"""Count approximate number of tokens"""
if self.use_api_for_tokens:
return self.tokens_count([text])[0].tokens # type: ignore
else:
return round(len(text) / 4.6)
class GigaChat(_BaseGigaChat, BaseLLM):
"""`GigaChat` large language models API.
To use, you should pass login and password to access GigaChat API or use token.
Example:
.. code-block:: python
from langchain_community.llms import GigaChat
giga = GigaChat(credentials=..., scope=..., verify_ssl_certs=False)
"""
payload_role: str = "user"
def _build_payload(self, messages: List[str]) -> Dict[str, Any]:
payload: Dict[str, Any] = {
"messages": [{"role": self.payload_role, "content": m} for m in messages],
}
if self.model:
payload["model"] = self.model
if self.profanity_check is not None:
payload["profanity_check"] = self.profanity_check
if self.temperature is not None:
payload["temperature"] = self.temperature
if self.top_p is not None:
payload["top_p"] = self.top_p
if self.max_tokens is not None:
payload["max_tokens"] = self.max_tokens
if self.repetition_penalty is not None:
payload["repetition_penalty"] = self.repetition_penalty
if self.update_interval is not None:
payload["update_interval"] = self.update_interval
if self.verbose:
logger.info("Giga request: %s", payload)
return payload
def _create_llm_result(self, response: Any) -> LLMResult:
generations = []
for res in response.choices:
finish_reason = res.finish_reason
gen = Generation(
text=res.message.content,
generation_info={"finish_reason": finish_reason},
)
generations.append([gen])
if finish_reason != "stop":
logger.warning(
"Giga generation stopped with reason: %s",
finish_reason,
)
if self.verbose:
logger.info("Giga response: %s", res.message.content)
token_usage = response.usage
llm_output = {"token_usage": token_usage, "model_name": response.model}
return LLMResult(generations=generations, llm_output=llm_output)
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
stream: Optional[bool] = None,
**kwargs: Any,
) -> LLMResult:
should_stream = stream if stream is not None else self.streaming
if should_stream:
generation: Optional[GenerationChunk] = None
stream_iter = self._stream(
prompts[0], stop=stop, run_manager=run_manager, **kwargs
)
for chunk in stream_iter:
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
return LLMResult(generations=[[generation]])
payload = self._build_payload(prompts)
response = self._client.chat(payload)
return self._create_llm_result(response)
async def _agenerate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
stream: Optional[bool] = None,
**kwargs: Any,
) -> LLMResult:
should_stream = stream if stream is not None else self.streaming
if should_stream:
generation: Optional[GenerationChunk] = None
stream_iter = self._astream(
prompts[0], stop=stop, run_manager=run_manager, **kwargs
)
async for chunk in stream_iter:
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
return LLMResult(generations=[[generation]])
payload = self._build_payload(prompts)
response = await self._client.achat(payload)
return self._create_llm_result(response)
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
payload = self._build_payload([prompt])
for chunk in self._client.stream(payload):
if chunk.choices:
content = chunk.choices[0].delta.content
yield GenerationChunk(text=content)
if run_manager:
run_manager.on_llm_new_token(content)
async def _astream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[GenerationChunk]:
payload = self._build_payload([prompt])
async for chunk in self._client.astream(payload):
if chunk.choices:
content = chunk.choices[0].delta.content
yield GenerationChunk(text=content)
if run_manager:
await run_manager.on_llm_new_token(content)
class Config:
extra = "allow"
|