File size: 11,659 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
from __future__ import annotations

import logging
from functools import cached_property
from typing import TYPE_CHECKING, Any, AsyncIterator, Dict, Iterator, List, Optional

from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models.llms import BaseLLM
from langchain_core.load.serializable import Serializable
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
from langchain_core.pydantic_v1 import root_validator

if TYPE_CHECKING:
    import gigachat
    import gigachat.models as gm

logger = logging.getLogger(__name__)


class _BaseGigaChat(Serializable):
    base_url: Optional[str] = None
    """ Base API URL """
    auth_url: Optional[str] = None
    """ Auth URL """
    credentials: Optional[str] = None
    """ Auth Token """
    scope: Optional[str] = None
    """ Permission scope for access token """

    access_token: Optional[str] = None
    """ Access token for GigaChat """

    model: Optional[str] = None
    """Model name to use."""
    user: Optional[str] = None
    """ Username for authenticate """
    password: Optional[str] = None
    """ Password for authenticate """

    timeout: Optional[float] = None
    """ Timeout for request """
    verify_ssl_certs: Optional[bool] = None
    """ Check certificates for all requests """

    ca_bundle_file: Optional[str] = None
    cert_file: Optional[str] = None
    key_file: Optional[str] = None
    key_file_password: Optional[str] = None
    # Support for connection to GigaChat through SSL certificates

    profanity: bool = True
    """ DEPRECATED: Check for profanity """
    profanity_check: Optional[bool] = None
    """ Check for profanity """
    streaming: bool = False
    """ Whether to stream the results or not. """
    temperature: Optional[float] = None
    """ What sampling temperature to use. """
    max_tokens: Optional[int] = None
    """ Maximum number of tokens to generate """
    use_api_for_tokens: bool = False
    """ Use GigaChat API for tokens count """
    verbose: bool = False
    """ Verbose logging """
    top_p: Optional[float] = None
    """ top_p value to use for nucleus sampling. Must be between 0.0 and 1.0 """
    repetition_penalty: Optional[float] = None
    """ The penalty applied to repeated tokens """
    update_interval: Optional[float] = None
    """ Minimum interval in seconds that elapses between sending tokens """

    @property
    def _llm_type(self) -> str:
        return "giga-chat-model"

    @property
    def lc_secrets(self) -> Dict[str, str]:
        return {
            "credentials": "GIGACHAT_CREDENTIALS",
            "access_token": "GIGACHAT_ACCESS_TOKEN",
            "password": "GIGACHAT_PASSWORD",
            "key_file_password": "GIGACHAT_KEY_FILE_PASSWORD",
        }

    @property
    def lc_serializable(self) -> bool:
        return True

    @cached_property
    def _client(self) -> gigachat.GigaChat:
        """Returns GigaChat API client"""
        import gigachat

        return gigachat.GigaChat(
            base_url=self.base_url,
            auth_url=self.auth_url,
            credentials=self.credentials,
            scope=self.scope,
            access_token=self.access_token,
            model=self.model,
            profanity_check=self.profanity_check,
            user=self.user,
            password=self.password,
            timeout=self.timeout,
            verify_ssl_certs=self.verify_ssl_certs,
            ca_bundle_file=self.ca_bundle_file,
            cert_file=self.cert_file,
            key_file=self.key_file,
            key_file_password=self.key_file_password,
            verbose=self.verbose,
        )

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate authenticate data in environment and python package is installed."""
        try:
            import gigachat  # noqa: F401
        except ImportError:
            raise ImportError(
                "Could not import gigachat python package. "
                "Please install it with `pip install gigachat`."
            )
        fields = set(cls.__fields__.keys())
        diff = set(values.keys()) - fields
        if diff:
            logger.warning(f"Extra fields {diff} in GigaChat class")
        if "profanity" in fields and values.get("profanity") is False:
            logger.warning(
                "'profanity' field is deprecated. Use 'profanity_check' instead."
            )
            if values.get("profanity_check") is None:
                values["profanity_check"] = values.get("profanity")
        return values

    @property
    def _identifying_params(self) -> Dict[str, Any]:
        """Get the identifying parameters."""
        return {
            "temperature": self.temperature,
            "model": self.model,
            "profanity": self.profanity_check,
            "streaming": self.streaming,
            "max_tokens": self.max_tokens,
            "top_p": self.top_p,
            "repetition_penalty": self.repetition_penalty,
        }

    def tokens_count(
        self, input_: List[str], model: Optional[str] = None
    ) -> List[gm.TokensCount]:
        """Get tokens of string list"""
        return self._client.tokens_count(input_, model)

    async def atokens_count(
        self, input_: List[str], model: Optional[str] = None
    ) -> List[gm.TokensCount]:
        """Get tokens of strings list (async)"""
        return await self._client.atokens_count(input_, model)

    def get_models(self) -> gm.Models:
        """Get available models of Gigachat"""
        return self._client.get_models()

    async def aget_models(self) -> gm.Models:
        """Get available models of Gigachat (async)"""
        return await self._client.aget_models()

    def get_model(self, model: str) -> gm.Model:
        """Get info about model"""
        return self._client.get_model(model)

    async def aget_model(self, model: str) -> gm.Model:
        """Get info about model (async)"""
        return await self._client.aget_model(model)

    def get_num_tokens(self, text: str) -> int:
        """Count approximate number of tokens"""
        if self.use_api_for_tokens:
            return self.tokens_count([text])[0].tokens  # type: ignore
        else:
            return round(len(text) / 4.6)


class GigaChat(_BaseGigaChat, BaseLLM):
    """`GigaChat` large language models API.

    To use, you should pass login and password to access GigaChat API or use token.

    Example:
        .. code-block:: python

            from langchain_community.llms import GigaChat
            giga = GigaChat(credentials=..., scope=..., verify_ssl_certs=False)
    """

    payload_role: str = "user"

    def _build_payload(self, messages: List[str]) -> Dict[str, Any]:
        payload: Dict[str, Any] = {
            "messages": [{"role": self.payload_role, "content": m} for m in messages],
        }
        if self.model:
            payload["model"] = self.model
        if self.profanity_check is not None:
            payload["profanity_check"] = self.profanity_check
        if self.temperature is not None:
            payload["temperature"] = self.temperature
        if self.top_p is not None:
            payload["top_p"] = self.top_p
        if self.max_tokens is not None:
            payload["max_tokens"] = self.max_tokens
        if self.repetition_penalty is not None:
            payload["repetition_penalty"] = self.repetition_penalty
        if self.update_interval is not None:
            payload["update_interval"] = self.update_interval

        if self.verbose:
            logger.info("Giga request: %s", payload)

        return payload

    def _create_llm_result(self, response: Any) -> LLMResult:
        generations = []
        for res in response.choices:
            finish_reason = res.finish_reason
            gen = Generation(
                text=res.message.content,
                generation_info={"finish_reason": finish_reason},
            )
            generations.append([gen])
            if finish_reason != "stop":
                logger.warning(
                    "Giga generation stopped with reason: %s",
                    finish_reason,
                )
            if self.verbose:
                logger.info("Giga response: %s", res.message.content)

        token_usage = response.usage
        llm_output = {"token_usage": token_usage, "model_name": response.model}
        return LLMResult(generations=generations, llm_output=llm_output)

    def _generate(
        self,
        prompts: List[str],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        stream: Optional[bool] = None,
        **kwargs: Any,
    ) -> LLMResult:
        should_stream = stream if stream is not None else self.streaming
        if should_stream:
            generation: Optional[GenerationChunk] = None
            stream_iter = self._stream(
                prompts[0], stop=stop, run_manager=run_manager, **kwargs
            )
            for chunk in stream_iter:
                if generation is None:
                    generation = chunk
                else:
                    generation += chunk
            assert generation is not None
            return LLMResult(generations=[[generation]])

        payload = self._build_payload(prompts)
        response = self._client.chat(payload)

        return self._create_llm_result(response)

    async def _agenerate(
        self,
        prompts: List[str],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        stream: Optional[bool] = None,
        **kwargs: Any,
    ) -> LLMResult:
        should_stream = stream if stream is not None else self.streaming
        if should_stream:
            generation: Optional[GenerationChunk] = None
            stream_iter = self._astream(
                prompts[0], stop=stop, run_manager=run_manager, **kwargs
            )
            async for chunk in stream_iter:
                if generation is None:
                    generation = chunk
                else:
                    generation += chunk
            assert generation is not None
            return LLMResult(generations=[[generation]])

        payload = self._build_payload(prompts)
        response = await self._client.achat(payload)

        return self._create_llm_result(response)

    def _stream(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Iterator[GenerationChunk]:
        payload = self._build_payload([prompt])

        for chunk in self._client.stream(payload):
            if chunk.choices:
                content = chunk.choices[0].delta.content
                yield GenerationChunk(text=content)
                if run_manager:
                    run_manager.on_llm_new_token(content)

    async def _astream(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> AsyncIterator[GenerationChunk]:
        payload = self._build_payload([prompt])

        async for chunk in self._client.astream(payload):
            if chunk.choices:
                content = chunk.choices[0].delta.content
                yield GenerationChunk(text=content)
                if run_manager:
                    await run_manager.on_llm_new_token(content)

    class Config:
        extra = "allow"