File size: 8,709 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from __future__ import annotations

import logging
from typing import Any, Callable, Dict, List, Optional

from langchain_core._api.deprecation import deprecated
from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models.llms import LLM
from langchain_core.load.serializable import Serializable
from langchain_core.pydantic_v1 import Extra, Field, SecretStr, root_validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
from tenacity import (
    before_sleep_log,
    retry,
    retry_if_exception_type,
    stop_after_attempt,
    wait_exponential,
)

from langchain_community.llms.utils import enforce_stop_tokens

logger = logging.getLogger(__name__)


def _create_retry_decorator(max_retries: int) -> Callable[[Any], Any]:
    import cohere

    # support v4 and v5
    retry_conditions = (
        retry_if_exception_type(cohere.error.CohereError)
        if hasattr(cohere, "error")
        else retry_if_exception_type(Exception)
    )

    min_seconds = 4
    max_seconds = 10
    # Wait 2^x * 1 second between each retry starting with
    # 4 seconds, then up to 10 seconds, then 10 seconds afterwards
    return retry(
        reraise=True,
        stop=stop_after_attempt(max_retries),
        wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
        retry=retry_conditions,
        before_sleep=before_sleep_log(logger, logging.WARNING),
    )


def completion_with_retry(llm: Cohere, **kwargs: Any) -> Any:
    """Use tenacity to retry the completion call."""
    retry_decorator = _create_retry_decorator(llm.max_retries)

    @retry_decorator
    def _completion_with_retry(**kwargs: Any) -> Any:
        return llm.client.generate(**kwargs)

    return _completion_with_retry(**kwargs)


def acompletion_with_retry(llm: Cohere, **kwargs: Any) -> Any:
    """Use tenacity to retry the completion call."""
    retry_decorator = _create_retry_decorator(llm.max_retries)

    @retry_decorator
    async def _completion_with_retry(**kwargs: Any) -> Any:
        return await llm.async_client.generate(**kwargs)

    return _completion_with_retry(**kwargs)


@deprecated(
    since="0.0.30", removal="0.3.0", alternative_import="langchain_cohere.BaseCohere"
)
class BaseCohere(Serializable):
    """Base class for Cohere models."""

    client: Any  #: :meta private:
    async_client: Any  #: :meta private:
    model: Optional[str] = Field(default=None)
    """Model name to use."""

    temperature: float = 0.75
    """A non-negative float that tunes the degree of randomness in generation."""

    cohere_api_key: Optional[SecretStr] = None
    """Cohere API key. If not provided, will be read from the environment variable."""

    stop: Optional[List[str]] = None

    streaming: bool = Field(default=False)
    """Whether to stream the results."""

    user_agent: str = "langchain"
    """Identifier for the application making the request."""

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that api key and python package exists in environment."""
        try:
            import cohere
        except ImportError:
            raise ImportError(
                "Could not import cohere python package. "
                "Please install it with `pip install cohere`."
            )
        else:
            values["cohere_api_key"] = convert_to_secret_str(
                get_from_dict_or_env(values, "cohere_api_key", "COHERE_API_KEY")
            )
            client_name = values["user_agent"]
            values["client"] = cohere.Client(
                api_key=values["cohere_api_key"].get_secret_value(),
                client_name=client_name,
            )
            values["async_client"] = cohere.AsyncClient(
                api_key=values["cohere_api_key"].get_secret_value(),
                client_name=client_name,
            )
        return values


@deprecated(
    since="0.1.14", removal="0.3.0", alternative_import="langchain_cohere.Cohere"
)
class Cohere(LLM, BaseCohere):
    """Cohere large language models.

    To use, you should have the ``cohere`` python package installed, and the
    environment variable ``COHERE_API_KEY`` set with your API key, or pass
    it as a named parameter to the constructor.

    Example:
        .. code-block:: python

            from langchain_community.llms import Cohere

            cohere = Cohere(model="gptd-instruct-tft", cohere_api_key="my-api-key")
    """

    max_tokens: int = 256
    """Denotes the number of tokens to predict per generation."""

    k: int = 0
    """Number of most likely tokens to consider at each step."""

    p: int = 1
    """Total probability mass of tokens to consider at each step."""

    frequency_penalty: float = 0.0
    """Penalizes repeated tokens according to frequency. Between 0 and 1."""

    presence_penalty: float = 0.0
    """Penalizes repeated tokens. Between 0 and 1."""

    truncate: Optional[str] = None
    """Specify how the client handles inputs longer than the maximum token
    length: Truncate from START, END or NONE"""

    max_retries: int = 10
    """Maximum number of retries to make when generating."""

    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.forbid

    @property
    def _default_params(self) -> Dict[str, Any]:
        """Get the default parameters for calling Cohere API."""
        return {
            "max_tokens": self.max_tokens,
            "temperature": self.temperature,
            "k": self.k,
            "p": self.p,
            "frequency_penalty": self.frequency_penalty,
            "presence_penalty": self.presence_penalty,
            "truncate": self.truncate,
        }

    @property
    def lc_secrets(self) -> Dict[str, str]:
        return {"cohere_api_key": "COHERE_API_KEY"}

    @property
    def _identifying_params(self) -> Dict[str, Any]:
        """Get the identifying parameters."""
        return {**{"model": self.model}, **self._default_params}

    @property
    def _llm_type(self) -> str:
        """Return type of llm."""
        return "cohere"

    def _invocation_params(self, stop: Optional[List[str]], **kwargs: Any) -> dict:
        params = self._default_params
        if self.stop is not None and stop is not None:
            raise ValueError("`stop` found in both the input and default params.")
        elif self.stop is not None:
            params["stop_sequences"] = self.stop
        else:
            params["stop_sequences"] = stop
        return {**params, **kwargs}

    def _process_response(self, response: Any, stop: Optional[List[str]]) -> str:
        text = response.generations[0].text
        # If stop tokens are provided, Cohere's endpoint returns them.
        # In order to make this consistent with other endpoints, we strip them.
        if stop:
            text = enforce_stop_tokens(text, stop)
        return text

    def _call(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> str:
        """Call out to Cohere's generate endpoint.

        Args:
            prompt: The prompt to pass into the model.
            stop: Optional list of stop words to use when generating.

        Returns:
            The string generated by the model.

        Example:
            .. code-block:: python

                response = cohere("Tell me a joke.")
        """
        params = self._invocation_params(stop, **kwargs)
        response = completion_with_retry(
            self, model=self.model, prompt=prompt, **params
        )
        _stop = params.get("stop_sequences")
        return self._process_response(response, _stop)

    async def _acall(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> str:
        """Async call out to Cohere's generate endpoint.

        Args:
            prompt: The prompt to pass into the model.
            stop: Optional list of stop words to use when generating.

        Returns:
            The string generated by the model.

        Example:
            .. code-block:: python

                response = await cohere("Tell me a joke.")
        """
        params = self._invocation_params(stop, **kwargs)
        response = await acompletion_with_retry(
            self, model=self.model, prompt=prompt, **params
        )
        _stop = params.get("stop_sequences")
        return self._process_response(response, _stop)