File size: 74,867 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "f2605a68-4ec8-40c5-aefc-e5ae7b23b884",
   "metadata": {},
   "source": [
    "# Building hotel room search with self-querying retrieval\n",
    "\n",
    "In this example we'll walk through how to build and iterate on a hotel room search service that leverages an LLM to generate structured filter queries that can then be passed to a vector store.\n",
    "\n",
    "For an introduction to self-querying retrieval [check out the docs](https://python.langchain.com/docs/modules/data_connection/retrievers/self_query)."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d621de99-d993-4f4b-b94a-d02b2c7ad4e0",
   "metadata": {},
   "source": [
    "## Imports and data prep\n",
    "\n",
    "In this example we use `ChatOpenAI` for the model and `ElasticsearchStore` for the vector store, but these can be swapped out with an LLM/ChatModel and [any VectorStore that support self-querying](https://python.langchain.com/docs/integrations/retrievers/self_query/).\n",
    "\n",
    "Download data from: https://www.kaggle.com/datasets/keshavramaiah/hotel-recommendation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8ecd1fbb-bdba-420b-bcc7-5ea8a232ab11",
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install langchain langchain-elasticsearch lark openai elasticsearch pandas"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "14d48ff6-2552-4b95-95a9-42dd444471d9",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "b852ec6e-7bf6-405e-ae7f-f457eb6e17f1",
   "metadata": {},
   "outputs": [],
   "source": [
    "details = (\n",
    "    pd.read_csv(\"~/Downloads/archive/Hotel_details.csv\")\n",
    "    .drop_duplicates(subset=\"hotelid\")\n",
    "    .set_index(\"hotelid\")\n",
    ")\n",
    "attributes = pd.read_csv(\n",
    "    \"~/Downloads/archive/Hotel_Room_attributes.csv\", index_col=\"id\"\n",
    ")\n",
    "price = pd.read_csv(\"~/Downloads/archive/hotels_RoomPrice.csv\", index_col=\"id\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "35a32177-2ca5-4d10-b8dc-f34c25795630",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>roomtype</th>\n",
       "      <th>onsiterate</th>\n",
       "      <th>roomamenities</th>\n",
       "      <th>maxoccupancy</th>\n",
       "      <th>roomdescription</th>\n",
       "      <th>hotelname</th>\n",
       "      <th>city</th>\n",
       "      <th>country</th>\n",
       "      <th>starrating</th>\n",
       "      <th>mealsincluded</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Vacation Home</td>\n",
       "      <td>636.09</td>\n",
       "      <td>Air conditioning: ;Closet: ;Fireplace: ;Free W...</td>\n",
       "      <td>4</td>\n",
       "      <td>Shower, Kitchenette, 2 bedrooms, 1 double bed ...</td>\n",
       "      <td>Pantlleni</td>\n",
       "      <td>Beddgelert</td>\n",
       "      <td>United Kingdom</td>\n",
       "      <td>3</td>\n",
       "      <td>False</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Vacation Home</td>\n",
       "      <td>591.74</td>\n",
       "      <td>Air conditioning: ;Closet: ;Dishwasher: ;Firep...</td>\n",
       "      <td>4</td>\n",
       "      <td>Shower, Kitchenette, 2 bedrooms, 1 double bed ...</td>\n",
       "      <td>Willow Cottage</td>\n",
       "      <td>Beverley</td>\n",
       "      <td>United Kingdom</td>\n",
       "      <td>3</td>\n",
       "      <td>False</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Guest room, Queen or Twin/Single Bed(s)</td>\n",
       "      <td>0.00</td>\n",
       "      <td>NaN</td>\n",
       "      <td>2</td>\n",
       "      <td>NaN</td>\n",
       "      <td>AC Hotel Manchester Salford Quays</td>\n",
       "      <td>Manchester</td>\n",
       "      <td>United Kingdom</td>\n",
       "      <td>4</td>\n",
       "      <td>False</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Bargemaster King Accessible Room</td>\n",
       "      <td>379.08</td>\n",
       "      <td>Air conditioning: ;Free Wi-Fi in all rooms!: ;...</td>\n",
       "      <td>2</td>\n",
       "      <td>Shower</td>\n",
       "      <td>Lincoln Plaza London, Curio Collection by Hilton</td>\n",
       "      <td>London</td>\n",
       "      <td>United Kingdom</td>\n",
       "      <td>4</td>\n",
       "      <td>True</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Twin Room</td>\n",
       "      <td>156.17</td>\n",
       "      <td>Additional toilet: ;Air conditioning: ;Blackou...</td>\n",
       "      <td>2</td>\n",
       "      <td>Room size: 15 m²/161 ft², Non-smoking, Shower,...</td>\n",
       "      <td>Ibis London Canning Town</td>\n",
       "      <td>London</td>\n",
       "      <td>United Kingdom</td>\n",
       "      <td>3</td>\n",
       "      <td>True</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                  roomtype  onsiterate  \\\n",
       "0                            Vacation Home      636.09   \n",
       "1                            Vacation Home      591.74   \n",
       "2  Guest room, Queen or Twin/Single Bed(s)        0.00   \n",
       "3         Bargemaster King Accessible Room      379.08   \n",
       "4                                Twin Room      156.17   \n",
       "\n",
       "                                       roomamenities  maxoccupancy  \\\n",
       "0  Air conditioning: ;Closet: ;Fireplace: ;Free W...             4   \n",
       "1  Air conditioning: ;Closet: ;Dishwasher: ;Firep...             4   \n",
       "2                                                NaN             2   \n",
       "3  Air conditioning: ;Free Wi-Fi in all rooms!: ;...             2   \n",
       "4  Additional toilet: ;Air conditioning: ;Blackou...             2   \n",
       "\n",
       "                                     roomdescription  \\\n",
       "0  Shower, Kitchenette, 2 bedrooms, 1 double bed ...   \n",
       "1  Shower, Kitchenette, 2 bedrooms, 1 double bed ...   \n",
       "2                                                NaN   \n",
       "3                                             Shower   \n",
       "4  Room size: 15 m²/161 ft², Non-smoking, Shower,...   \n",
       "\n",
       "                                          hotelname        city  \\\n",
       "0                                         Pantlleni  Beddgelert   \n",
       "1                                    Willow Cottage    Beverley   \n",
       "2                 AC Hotel Manchester Salford Quays  Manchester   \n",
       "3  Lincoln Plaza London, Curio Collection by Hilton      London   \n",
       "4                          Ibis London Canning Town      London   \n",
       "\n",
       "          country  starrating  mealsincluded  \n",
       "0  United Kingdom           3          False  \n",
       "1  United Kingdom           3          False  \n",
       "2  United Kingdom           4          False  \n",
       "3  United Kingdom           4           True  \n",
       "4  United Kingdom           3           True  "
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "latest_price = price.drop_duplicates(subset=\"refid\", keep=\"last\")[\n",
    "    [\n",
    "        \"hotelcode\",\n",
    "        \"roomtype\",\n",
    "        \"onsiterate\",\n",
    "        \"roomamenities\",\n",
    "        \"maxoccupancy\",\n",
    "        \"mealinclusiontype\",\n",
    "    ]\n",
    "]\n",
    "latest_price[\"ratedescription\"] = attributes.loc[latest_price.index][\"ratedescription\"]\n",
    "latest_price = latest_price.join(\n",
    "    details[[\"hotelname\", \"city\", \"country\", \"starrating\"]], on=\"hotelcode\"\n",
    ")\n",
    "latest_price = latest_price.rename({\"ratedescription\": \"roomdescription\"}, axis=1)\n",
    "latest_price[\"mealsincluded\"] = ~latest_price[\"mealinclusiontype\"].isnull()\n",
    "latest_price.pop(\"hotelcode\")\n",
    "latest_price.pop(\"mealinclusiontype\")\n",
    "latest_price = latest_price.reset_index(drop=True)\n",
    "latest_price.head()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1e4742af-c178-4cf7-a548-b97b3e37bd55",
   "metadata": {},
   "source": [
    "## Describe data attributes\n",
    "\n",
    "We'll use a self-query retriever, which requires us to describe the metadata we can filter on.\n",
    "\n",
    "Or if we're feeling lazy we can have a model write a draft of the descriptions for us :)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "5e2cb352-9111-47b8-9808-37228ba81f87",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_openai import ChatOpenAI\n",
    "\n",
    "model = ChatOpenAI(model=\"gpt-4\")\n",
    "res = model.predict(\n",
    "    \"Below is a table with information about hotel rooms. \"\n",
    "    \"Return a JSON list with an entry for each column. Each entry should have \"\n",
    "    '{\"name\": \"column name\", \"description\": \"column description\", \"type\": \"column data type\"}'\n",
    "    f\"\\n\\n{latest_price.head()}\\n\\nJSON:\\n\"\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "d831664d-68cd-4dba-aad2-9248f10c7663",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[{'name': 'roomtype', 'description': 'The type of the room', 'type': 'string'},\n",
       " {'name': 'onsiterate',\n",
       "  'description': 'The rate of the room',\n",
       "  'type': 'float'},\n",
       " {'name': 'roomamenities',\n",
       "  'description': 'Amenities available in the room',\n",
       "  'type': 'string'},\n",
       " {'name': 'maxoccupancy',\n",
       "  'description': 'Maximum number of people that can occupy the room',\n",
       "  'type': 'integer'},\n",
       " {'name': 'roomdescription',\n",
       "  'description': 'Description of the room',\n",
       "  'type': 'string'},\n",
       " {'name': 'hotelname', 'description': 'Name of the hotel', 'type': 'string'},\n",
       " {'name': 'city',\n",
       "  'description': 'City where the hotel is located',\n",
       "  'type': 'string'},\n",
       " {'name': 'country',\n",
       "  'description': 'Country where the hotel is located',\n",
       "  'type': 'string'},\n",
       " {'name': 'starrating',\n",
       "  'description': 'Star rating of the hotel',\n",
       "  'type': 'integer'},\n",
       " {'name': 'mealsincluded',\n",
       "  'description': 'Whether meals are included or not',\n",
       "  'type': 'boolean'}]"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import json\n",
    "\n",
    "attribute_info = json.loads(res)\n",
    "attribute_info"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "aadb16c5-9f70-4bcc-b4fa-1af31bc8e38a",
   "metadata": {},
   "source": [
    "For low cardinality features, let's include the valid values in the description"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "cce77f43-980a-4ab6-923a-0f9d70a093d6",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "maxoccupancy     19\n",
       "country          29\n",
       "starrating        3\n",
       "mealsincluded     2\n",
       "dtype: int64"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "latest_price.nunique()[latest_price.nunique() < 40]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "2db33ed8-4f91-4a2d-9613-9dd6c9fcdbcb",
   "metadata": {},
   "outputs": [],
   "source": [
    "attribute_info[-2][\"description\"] += (\n",
    "    f\". Valid values are {sorted(latest_price['starrating'].value_counts().index.tolist())}\"\n",
    ")\n",
    "attribute_info[3][\"description\"] += (\n",
    "    f\". Valid values are {sorted(latest_price['maxoccupancy'].value_counts().index.tolist())}\"\n",
    ")\n",
    "attribute_info[-3][\"description\"] += (\n",
    "    f\". Valid values are {sorted(latest_price['country'].value_counts().index.tolist())}\"\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "89c7461b-e6f7-4608-9929-ae952fb3348c",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[{'name': 'roomtype', 'description': 'The type of the room', 'type': 'string'},\n",
       " {'name': 'onsiterate',\n",
       "  'description': 'The rate of the room',\n",
       "  'type': 'float'},\n",
       " {'name': 'roomamenities',\n",
       "  'description': 'Amenities available in the room',\n",
       "  'type': 'string'},\n",
       " {'name': 'maxoccupancy',\n",
       "  'description': 'Maximum number of people that can occupy the room. Valid values are [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 24]',\n",
       "  'type': 'integer'},\n",
       " {'name': 'roomdescription',\n",
       "  'description': 'Description of the room',\n",
       "  'type': 'string'},\n",
       " {'name': 'hotelname', 'description': 'Name of the hotel', 'type': 'string'},\n",
       " {'name': 'city',\n",
       "  'description': 'City where the hotel is located',\n",
       "  'type': 'string'},\n",
       " {'name': 'country',\n",
       "  'description': \"Country where the hotel is located. Valid values are ['Austria', 'Belgium', 'Bulgaria', 'Croatia', 'Cyprus', 'Czech Republic', 'Denmark', 'Estonia', 'Finland', 'France', 'Germany', 'Greece', 'Hungary', 'Ireland', 'Italy', 'Latvia', 'Lithuania', 'Luxembourg', 'Malta', 'Netherlands', 'Poland', 'Portugal', 'Romania', 'Slovakia', 'Slovenia', 'Spain', 'Sweden', 'Switzerland', 'United Kingdom']\",\n",
       "  'type': 'string'},\n",
       " {'name': 'starrating',\n",
       "  'description': 'Star rating of the hotel. Valid values are [2, 3, 4]',\n",
       "  'type': 'integer'},\n",
       " {'name': 'mealsincluded',\n",
       "  'description': 'Whether meals are included or not',\n",
       "  'type': 'boolean'}]"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "attribute_info"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "81c75a25-9c64-4da6-87ae-580bd47962bb",
   "metadata": {},
   "source": [
    "## Creating a query constructor chain\n",
    "\n",
    "Let's take a look at the chain that will convert natural language requests into structured queries.\n",
    "\n",
    "To start we can just load the prompt and see what it looks like"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "b960f5f4-75f7-4a93-959f-b5293986b864",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.chains.query_constructor.base import (\n",
    "    get_query_constructor_prompt,\n",
    "    load_query_constructor_runnable,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "bc85c90d-08fc-444f-b912-c6b2ac089bfd",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Your goal is to structure the user's query to match the request schema provided below.\n",
      "\n",
      "<< Structured Request Schema >>\n",
      "When responding use a markdown code snippet with a JSON object formatted in the following schema:\n",
      "\n",
      "```json\n",
      "{\n",
      "    \"query\": string \\ text string to compare to document contents\n",
      "    \"filter\": string \\ logical condition statement for filtering documents\n",
      "}\n",
      "```\n",
      "\n",
      "The query string should contain only text that is expected to match the contents of documents. Any conditions in the filter should not be mentioned in the query as well.\n",
      "\n",
      "A logical condition statement is composed of one or more comparison and logical operation statements.\n",
      "\n",
      "A comparison statement takes the form: `comp(attr, val)`:\n",
      "- `comp` (eq | ne | gt | gte | lt | lte | contain | like | in | nin): comparator\n",
      "- `attr` (string):  name of attribute to apply the comparison to\n",
      "- `val` (string): is the comparison value\n",
      "\n",
      "A logical operation statement takes the form `op(statement1, statement2, ...)`:\n",
      "- `op` (and | or | not): logical operator\n",
      "- `statement1`, `statement2`, ... (comparison statements or logical operation statements): one or more statements to apply the operation to\n",
      "\n",
      "Make sure that you only use the comparators and logical operators listed above and no others.\n",
      "Make sure that filters only refer to attributes that exist in the data source.\n",
      "Make sure that filters only use the attributed names with its function names if there are functions applied on them.\n",
      "Make sure that filters only use format `YYYY-MM-DD` when handling timestamp data typed values.\n",
      "Make sure that filters take into account the descriptions of attributes and only make comparisons that are feasible given the type of data being stored.\n",
      "Make sure that filters are only used as needed. If there are no filters that should be applied return \"NO_FILTER\" for the filter value.\n",
      "\n",
      "<< Example 1. >>\n",
      "Data Source:\n",
      "```json\n",
      "{\n",
      "    \"content\": \"Lyrics of a song\",\n",
      "    \"attributes\": {\n",
      "        \"artist\": {\n",
      "            \"type\": \"string\",\n",
      "            \"description\": \"Name of the song artist\"\n",
      "        },\n",
      "        \"length\": {\n",
      "            \"type\": \"integer\",\n",
      "            \"description\": \"Length of the song in seconds\"\n",
      "        },\n",
      "        \"genre\": {\n",
      "            \"type\": \"string\",\n",
      "            \"description\": \"The song genre, one of \"pop\", \"rock\" or \"rap\"\"\n",
      "        }\n",
      "    }\n",
      "}\n",
      "```\n",
      "\n",
      "User Query:\n",
      "What are songs by Taylor Swift or Katy Perry about teenage romance under 3 minutes long in the dance pop genre\n",
      "\n",
      "Structured Request:\n",
      "```json\n",
      "{\n",
      "    \"query\": \"teenager love\",\n",
      "    \"filter\": \"and(or(eq(\\\"artist\\\", \\\"Taylor Swift\\\"), eq(\\\"artist\\\", \\\"Katy Perry\\\")), lt(\\\"length\\\", 180), eq(\\\"genre\\\", \\\"pop\\\"))\"\n",
      "}\n",
      "```\n",
      "\n",
      "\n",
      "<< Example 2. >>\n",
      "Data Source:\n",
      "```json\n",
      "{\n",
      "    \"content\": \"Lyrics of a song\",\n",
      "    \"attributes\": {\n",
      "        \"artist\": {\n",
      "            \"type\": \"string\",\n",
      "            \"description\": \"Name of the song artist\"\n",
      "        },\n",
      "        \"length\": {\n",
      "            \"type\": \"integer\",\n",
      "            \"description\": \"Length of the song in seconds\"\n",
      "        },\n",
      "        \"genre\": {\n",
      "            \"type\": \"string\",\n",
      "            \"description\": \"The song genre, one of \"pop\", \"rock\" or \"rap\"\"\n",
      "        }\n",
      "    }\n",
      "}\n",
      "```\n",
      "\n",
      "User Query:\n",
      "What are songs that were not published on Spotify\n",
      "\n",
      "Structured Request:\n",
      "```json\n",
      "{\n",
      "    \"query\": \"\",\n",
      "    \"filter\": \"NO_FILTER\"\n",
      "}\n",
      "```\n",
      "\n",
      "\n",
      "<< Example 3. >>\n",
      "Data Source:\n",
      "```json\n",
      "{\n",
      "    \"content\": \"Detailed description of a hotel room\",\n",
      "    \"attributes\": {\n",
      "    \"roomtype\": {\n",
      "        \"description\": \"The type of the room\",\n",
      "        \"type\": \"string\"\n",
      "    },\n",
      "    \"onsiterate\": {\n",
      "        \"description\": \"The rate of the room\",\n",
      "        \"type\": \"float\"\n",
      "    },\n",
      "    \"roomamenities\": {\n",
      "        \"description\": \"Amenities available in the room\",\n",
      "        \"type\": \"string\"\n",
      "    },\n",
      "    \"maxoccupancy\": {\n",
      "        \"description\": \"Maximum number of people that can occupy the room. Valid values are [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 24]\",\n",
      "        \"type\": \"integer\"\n",
      "    },\n",
      "    \"roomdescription\": {\n",
      "        \"description\": \"Description of the room\",\n",
      "        \"type\": \"string\"\n",
      "    },\n",
      "    \"hotelname\": {\n",
      "        \"description\": \"Name of the hotel\",\n",
      "        \"type\": \"string\"\n",
      "    },\n",
      "    \"city\": {\n",
      "        \"description\": \"City where the hotel is located\",\n",
      "        \"type\": \"string\"\n",
      "    },\n",
      "    \"country\": {\n",
      "        \"description\": \"Country where the hotel is located. Valid values are ['Austria', 'Belgium', 'Bulgaria', 'Croatia', 'Cyprus', 'Czech Republic', 'Denmark', 'Estonia', 'Finland', 'France', 'Germany', 'Greece', 'Hungary', 'Ireland', 'Italy', 'Latvia', 'Lithuania', 'Luxembourg', 'Malta', 'Netherlands', 'Poland', 'Portugal', 'Romania', 'Slovakia', 'Slovenia', 'Spain', 'Sweden', 'Switzerland', 'United Kingdom']\",\n",
      "        \"type\": \"string\"\n",
      "    },\n",
      "    \"starrating\": {\n",
      "        \"description\": \"Star rating of the hotel. Valid values are [2, 3, 4]\",\n",
      "        \"type\": \"integer\"\n",
      "    },\n",
      "    \"mealsincluded\": {\n",
      "        \"description\": \"Whether meals are included or not\",\n",
      "        \"type\": \"boolean\"\n",
      "    }\n",
      "}\n",
      "}\n",
      "```\n",
      "\n",
      "User Query:\n",
      "{query}\n",
      "\n",
      "Structured Request:\n",
      "\n"
     ]
    }
   ],
   "source": [
    "doc_contents = \"Detailed description of a hotel room\"\n",
    "prompt = get_query_constructor_prompt(doc_contents, attribute_info)\n",
    "print(prompt.format(query=\"{query}\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "1e7efcae-7943-4200-be43-5c5117ba1c9d",
   "metadata": {},
   "outputs": [],
   "source": [
    "chain = load_query_constructor_runnable(\n",
    "    ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0), doc_contents, attribute_info\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "74bf0cb2-84a5-45ef-8fc3-cbcffcaf0bbf",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "StructuredQuery(query='hotel', filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='country', value='Italy'), Comparison(comparator=<Comparator.LTE: 'lte'>, attribute='onsiterate', value=200)]), limit=None)"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "chain.invoke({\"query\": \"I want a hotel in Southern Europe and my budget is 200 bucks.\"})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "3ad704f3-679b-4dd2-b6c3-b4469ba60848",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "StructuredQuery(query='2-person room', filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Operation(operator=<Operator.OR: 'or'>, arguments=[Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='city', value='Vienna'), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='city', value='London')]), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='maxoccupancy', value=2), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='mealsincluded', value=True), Comparison(comparator=<Comparator.CONTAIN: 'contain'>, attribute='roomamenities', value='AC')]), limit=None)"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "chain.invoke(\n",
    "    {\n",
    "        \"query\": \"Find a 2-person room in Vienna or London, preferably with meals included and AC\"\n",
    "    }\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "109591d0-758a-48ab-b337-41092c6d289f",
   "metadata": {},
   "source": [
    "## Refining attribute descriptions\n",
    "\n",
    "We can see that at least two issues above. First is that when we ask for a Southern European destination we're only getting a filter for Italy, and second when we ask for AC we get a literal string lookup for AC (which isn't so bad but will miss things like 'Air conditioning').\n",
    "\n",
    "As a first step, let's try to update our description of the 'country' attribute to emphasize that equality should only be used when a specific country is mentioned."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "07b6a751-5122-4283-aa32-0f3bbc5e4354",
   "metadata": {},
   "outputs": [],
   "source": [
    "attribute_info[-3][\"description\"] += (\n",
    "    \". NOTE: Only use the 'eq' operator if a specific country is mentioned. If a region is mentioned, include all relevant countries in filter.\"\n",
    ")\n",
    "chain = load_query_constructor_runnable(\n",
    "    ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0),\n",
    "    doc_contents,\n",
    "    attribute_info,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "ca33b44c-29bd-4d63-bb3e-ff8eabe1e86c",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "StructuredQuery(query='hotel', filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='mealsincluded', value=False), Comparison(comparator=<Comparator.LTE: 'lte'>, attribute='onsiterate', value=200), Operation(operator=<Operator.OR: 'or'>, arguments=[Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='country', value='Italy'), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='country', value='Spain'), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='country', value='Greece'), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='country', value='Portugal'), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='country', value='Croatia'), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='country', value='Cyprus'), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='country', value='Malta'), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='country', value='Bulgaria'), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='country', value='Romania'), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='country', value='Slovenia'), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='country', value='Czech Republic'), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='country', value='Slovakia'), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='country', value='Hungary'), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='country', value='Poland'), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='country', value='Estonia'), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='country', value='Latvia'), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='country', value='Lithuania')])]), limit=None)"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "chain.invoke({\"query\": \"I want a hotel in Southern Europe and my budget is 200 bucks.\"})"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "eb793908-ea10-4a55-96b8-ab6915262c50",
   "metadata": {},
   "source": [
    "## Refining which attributes to filter on\n",
    "\n",
    "This seems to have helped! Now let's try to narrow the attributes we're filtering on. More freeform attributes we can leave to the main query, which is better for capturing semantic meaning than searching for specific substrings."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "7ca32075-9361-48c1-b349-511a1dd4f908",
   "metadata": {},
   "outputs": [],
   "source": [
    "content_attr = [\"roomtype\", \"roomamenities\", \"roomdescription\", \"hotelname\"]\n",
    "doc_contents = \"A detailed description of a hotel room, including information about the room type and room amenities.\"\n",
    "filter_attribute_info = tuple(\n",
    "    ai for ai in attribute_info if ai[\"name\"] not in content_attr\n",
    ")\n",
    "chain = load_query_constructor_runnable(\n",
    "    ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0),\n",
    "    doc_contents,\n",
    "    filter_attribute_info,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "8eb956af-a799-4267-a098-d443c975ee0f",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "StructuredQuery(query='2-person room', filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Operation(operator=<Operator.OR: 'or'>, arguments=[Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='city', value='Vienna'), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='city', value='London')]), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='maxoccupancy', value=2), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='mealsincluded', value=True)]), limit=None)"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "chain.invoke(\n",
    "    {\n",
    "        \"query\": \"Find a 2-person room in Vienna or London, preferably with meals included and AC\"\n",
    "    }\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b0263ad4-aef9-48ce-be66-eabd1999beb3",
   "metadata": {},
   "source": [
    "## Adding examples specific to our use case\n",
    "\n",
    "We've removed the strict filter for 'AC' but it's still not being included in the query string. Our chain prompt is a few-shot prompt with some default examples. Let's see if adding use case-specific examples will help:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "62b903c1-3861-4aef-9ea6-1666eeee503c",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Your goal is to structure the user's query to match the request schema provided below.\n",
      "\n",
      "<< Structured Request Schema >>\n",
      "When responding use a markdown code snippet with a JSON object formatted in the following schema:\n",
      "\n",
      "```json\n",
      "{\n",
      "    \"query\": string \\ text string to compare to document contents\n",
      "    \"filter\": string \\ logical condition statement for filtering documents\n",
      "}\n",
      "```\n",
      "\n",
      "The query string should contain only text that is expected to match the contents of documents. Any conditions in the filter should not be mentioned in the query as well.\n",
      "\n",
      "A logical condition statement is composed of one or more comparison and logical operation statements.\n",
      "\n",
      "A comparison statement takes the form: `comp(attr, val)`:\n",
      "- `comp` (eq | ne | gt | gte | lt | lte | contain | like | in | nin): comparator\n",
      "- `attr` (string):  name of attribute to apply the comparison to\n",
      "- `val` (string): is the comparison value\n",
      "\n",
      "A logical operation statement takes the form `op(statement1, statement2, ...)`:\n",
      "- `op` (and | or | not): logical operator\n",
      "- `statement1`, `statement2`, ... (comparison statements or logical operation statements): one or more statements to apply the operation to\n",
      "\n",
      "Make sure that you only use the comparators and logical operators listed above and no others.\n",
      "Make sure that filters only refer to attributes that exist in the data source.\n",
      "Make sure that filters only use the attributed names with its function names if there are functions applied on them.\n",
      "Make sure that filters only use format `YYYY-MM-DD` when handling timestamp data typed values.\n",
      "Make sure that filters take into account the descriptions of attributes and only make comparisons that are feasible given the type of data being stored.\n",
      "Make sure that filters are only used as needed. If there are no filters that should be applied return \"NO_FILTER\" for the filter value.\n",
      "\n",
      "<< Data Source >>\n",
      "```json\n",
      "{\n",
      "    \"content\": \"A detailed description of a hotel room, including information about the room type and room amenities.\",\n",
      "    \"attributes\": {\n",
      "    \"onsiterate\": {\n",
      "        \"description\": \"The rate of the room\",\n",
      "        \"type\": \"float\"\n",
      "    },\n",
      "    \"maxoccupancy\": {\n",
      "        \"description\": \"Maximum number of people that can occupy the room. Valid values are [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 24]\",\n",
      "        \"type\": \"integer\"\n",
      "    },\n",
      "    \"city\": {\n",
      "        \"description\": \"City where the hotel is located\",\n",
      "        \"type\": \"string\"\n",
      "    },\n",
      "    \"country\": {\n",
      "        \"description\": \"Country where the hotel is located. Valid values are ['Austria', 'Belgium', 'Bulgaria', 'Croatia', 'Cyprus', 'Czech Republic', 'Denmark', 'Estonia', 'Finland', 'France', 'Germany', 'Greece', 'Hungary', 'Ireland', 'Italy', 'Latvia', 'Lithuania', 'Luxembourg', 'Malta', 'Netherlands', 'Poland', 'Portugal', 'Romania', 'Slovakia', 'Slovenia', 'Spain', 'Sweden', 'Switzerland', 'United Kingdom']. NOTE: Only use the 'eq' operator if a specific country is mentioned. If a region is mentioned, include all relevant countries in filter.\",\n",
      "        \"type\": \"string\"\n",
      "    },\n",
      "    \"starrating\": {\n",
      "        \"description\": \"Star rating of the hotel. Valid values are [2, 3, 4]\",\n",
      "        \"type\": \"integer\"\n",
      "    },\n",
      "    \"mealsincluded\": {\n",
      "        \"description\": \"Whether meals are included or not\",\n",
      "        \"type\": \"boolean\"\n",
      "    }\n",
      "}\n",
      "}\n",
      "```\n",
      "\n",
      "\n",
      "<< Example 1. >>\n",
      "User Query:\n",
      "I want a hotel in the Balkans with a king sized bed and a hot tub. Budget is $300 a night\n",
      "\n",
      "Structured Request:\n",
      "```json\n",
      "{\n",
      "    \"query\": \"king-sized bed, hot tub\",\n",
      "    \"filter\": \"and(in(\\\"country\\\", [\\\"Bulgaria\\\", \\\"Greece\\\", \\\"Croatia\\\", \\\"Serbia\\\"]), lte(\\\"onsiterate\\\", 300))\"\n",
      "}\n",
      "```\n",
      "\n",
      "\n",
      "<< Example 2. >>\n",
      "User Query:\n",
      "A room with breakfast included for 3 people, at a Hilton\n",
      "\n",
      "Structured Request:\n",
      "```json\n",
      "{\n",
      "    \"query\": \"Hilton\",\n",
      "    \"filter\": \"and(eq(\\\"mealsincluded\\\", true), gte(\\\"maxoccupancy\\\", 3))\"\n",
      "}\n",
      "```\n",
      "\n",
      "\n",
      "<< Example 3. >>\n",
      "User Query:\n",
      "{query}\n",
      "\n",
      "Structured Request:\n",
      "\n"
     ]
    }
   ],
   "source": [
    "examples = [\n",
    "    (\n",
    "        \"I want a hotel in the Balkans with a king sized bed and a hot tub. Budget is $300 a night\",\n",
    "        {\n",
    "            \"query\": \"king-sized bed, hot tub\",\n",
    "            \"filter\": 'and(in(\"country\", [\"Bulgaria\", \"Greece\", \"Croatia\", \"Serbia\"]), lte(\"onsiterate\", 300))',\n",
    "        },\n",
    "    ),\n",
    "    (\n",
    "        \"A room with breakfast included for 3 people, at a Hilton\",\n",
    "        {\n",
    "            \"query\": \"Hilton\",\n",
    "            \"filter\": 'and(eq(\"mealsincluded\", true), gte(\"maxoccupancy\", 3))',\n",
    "        },\n",
    "    ),\n",
    "]\n",
    "prompt = get_query_constructor_prompt(\n",
    "    doc_contents, filter_attribute_info, examples=examples\n",
    ")\n",
    "print(prompt.format(query=\"{query}\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "0f27f3eb-7261-4362-8060-58fbdc8beece",
   "metadata": {},
   "outputs": [],
   "source": [
    "chain = load_query_constructor_runnable(\n",
    "    ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0),\n",
    "    doc_contents,\n",
    "    filter_attribute_info,\n",
    "    examples=examples,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "5808741d-971a-4bb1-a8f0-c403059df842",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "StructuredQuery(query='2-person room, meals included, AC', filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Operation(operator=<Operator.OR: 'or'>, arguments=[Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='city', value='Vienna'), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='city', value='London')]), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='mealsincluded', value=True)]), limit=None)"
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "chain.invoke(\n",
    "    {\n",
    "        \"query\": \"Find a 2-person room in Vienna or London, preferably with meals included and AC\"\n",
    "    }\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8d66439f-4a4f-44c7-8b9a-8b2d5d6a3683",
   "metadata": {},
   "source": [
    "This seems to have helped! Let's try another complex query:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "29ed9602-8950-44c9-aaf8-32b69235eb8c",
   "metadata": {},
   "outputs": [
    {
     "ename": "OutputParserException",
     "evalue": "Parsing text\n```json\n{\n    \"query\": \"highly rated, coast, patio, fireplace\",\n    \"filter\": \"and(eq(\\\"starrating\\\", 4), contain(\\\"description\\\", \\\"coast\\\"), contain(\\\"description\\\", \\\"patio\\\"), contain(\\\"description\\\", \\\"fireplace\\\"))\"\n}\n```\n raised following error:\nReceived invalid attributes description. Allowed attributes are ['onsiterate', 'maxoccupancy', 'city', 'country', 'starrating', 'mealsincluded']",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mValueError\u001b[0m                                Traceback (most recent call last)",
      "File \u001b[0;32m~/langchain/libs/langchain/langchain/chains/query_constructor/base.py:53\u001b[0m, in \u001b[0;36mStructuredQueryOutputParser.parse\u001b[0;34m(self, text)\u001b[0m\n\u001b[1;32m     52\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m---> 53\u001b[0m     parsed[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfilter\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mast_parse\u001b[49m\u001b[43m(\u001b[49m\u001b[43mparsed\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfilter\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     54\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m parsed\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlimit\u001b[39m\u001b[38;5;124m\"\u001b[39m):\n",
      "File \u001b[0;32m~/langchain/.venv/lib/python3.9/site-packages/lark/lark.py:652\u001b[0m, in \u001b[0;36mLark.parse\u001b[0;34m(self, text, start, on_error)\u001b[0m\n\u001b[1;32m    635\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Parse the given text, according to the options provided.\u001b[39;00m\n\u001b[1;32m    636\u001b[0m \n\u001b[1;32m    637\u001b[0m \u001b[38;5;124;03mParameters:\u001b[39;00m\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    650\u001b[0m \n\u001b[1;32m    651\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m--> 652\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparser\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparse\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtext\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstart\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstart\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mon_error\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mon_error\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/langchain/.venv/lib/python3.9/site-packages/lark/parser_frontends.py:101\u001b[0m, in \u001b[0;36mParsingFrontend.parse\u001b[0;34m(self, text, start, on_error)\u001b[0m\n\u001b[1;32m    100\u001b[0m stream \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_make_lexer_thread(text)\n\u001b[0;32m--> 101\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparser\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparse\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mchosen_start\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkw\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/langchain/.venv/lib/python3.9/site-packages/lark/parsers/lalr_parser.py:41\u001b[0m, in \u001b[0;36mLALR_Parser.parse\u001b[0;34m(self, lexer, start, on_error)\u001b[0m\n\u001b[1;32m     40\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m---> 41\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparser\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparse\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlexer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstart\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     42\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m UnexpectedInput \u001b[38;5;28;01mas\u001b[39;00m e:\n",
      "File \u001b[0;32m~/langchain/.venv/lib/python3.9/site-packages/lark/parsers/lalr_parser.py:171\u001b[0m, in \u001b[0;36m_Parser.parse\u001b[0;34m(self, lexer, start, value_stack, state_stack, start_interactive)\u001b[0m\n\u001b[1;32m    170\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m InteractiveParser(\u001b[38;5;28mself\u001b[39m, parser_state, parser_state\u001b[38;5;241m.\u001b[39mlexer)\n\u001b[0;32m--> 171\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparse_from_state\u001b[49m\u001b[43m(\u001b[49m\u001b[43mparser_state\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/langchain/.venv/lib/python3.9/site-packages/lark/parsers/lalr_parser.py:184\u001b[0m, in \u001b[0;36m_Parser.parse_from_state\u001b[0;34m(self, state, last_token)\u001b[0m\n\u001b[1;32m    183\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m token \u001b[38;5;129;01min\u001b[39;00m state\u001b[38;5;241m.\u001b[39mlexer\u001b[38;5;241m.\u001b[39mlex(state):\n\u001b[0;32m--> 184\u001b[0m     \u001b[43mstate\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfeed_token\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtoken\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    186\u001b[0m end_token \u001b[38;5;241m=\u001b[39m Token\u001b[38;5;241m.\u001b[39mnew_borrow_pos(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m$END\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m'\u001b[39m, token) \u001b[38;5;28;01mif\u001b[39;00m token \u001b[38;5;28;01melse\u001b[39;00m Token(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m$END\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m1\u001b[39m)\n",
      "File \u001b[0;32m~/langchain/.venv/lib/python3.9/site-packages/lark/parsers/lalr_parser.py:150\u001b[0m, in \u001b[0;36mParserState.feed_token\u001b[0;34m(self, token, is_end)\u001b[0m\n\u001b[1;32m    148\u001b[0m     s \u001b[38;5;241m=\u001b[39m []\n\u001b[0;32m--> 150\u001b[0m value \u001b[38;5;241m=\u001b[39m \u001b[43mcallbacks\u001b[49m\u001b[43m[\u001b[49m\u001b[43mrule\u001b[49m\u001b[43m]\u001b[49m\u001b[43m(\u001b[49m\u001b[43ms\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    152\u001b[0m _action, new_state \u001b[38;5;241m=\u001b[39m states[state_stack[\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m]][rule\u001b[38;5;241m.\u001b[39morigin\u001b[38;5;241m.\u001b[39mname]\n",
      "File \u001b[0;32m~/langchain/.venv/lib/python3.9/site-packages/lark/parse_tree_builder.py:153\u001b[0m, in \u001b[0;36mChildFilterLALR_NoPlaceholders.__call__\u001b[0;34m(self, children)\u001b[0m\n\u001b[1;32m    152\u001b[0m         filtered\u001b[38;5;241m.\u001b[39mappend(children[i])\n\u001b[0;32m--> 153\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnode_builder\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfiltered\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/langchain/.venv/lib/python3.9/site-packages/lark/parse_tree_builder.py:325\u001b[0m, in \u001b[0;36mapply_visit_wrapper.<locals>.f\u001b[0;34m(children)\u001b[0m\n\u001b[1;32m    323\u001b[0m \u001b[38;5;129m@wraps\u001b[39m(func)\n\u001b[1;32m    324\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mf\u001b[39m(children):\n\u001b[0;32m--> 325\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mwrapper\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mchildren\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/langchain/.venv/lib/python3.9/site-packages/lark/visitors.py:501\u001b[0m, in \u001b[0;36m_vargs_inline\u001b[0;34m(f, _data, children, _meta)\u001b[0m\n\u001b[1;32m    500\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_vargs_inline\u001b[39m(f, _data, children, _meta):\n\u001b[0;32m--> 501\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mf\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mchildren\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/langchain/.venv/lib/python3.9/site-packages/lark/visitors.py:479\u001b[0m, in \u001b[0;36m_VArgsWrapper.__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m    478\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__call__\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m--> 479\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbase_func\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/langchain/libs/langchain/langchain/chains/query_constructor/parser.py:79\u001b[0m, in \u001b[0;36mQueryTransformer.func_call\u001b[0;34m(self, func_name, args)\u001b[0m\n\u001b[1;32m     78\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mallowed_attributes \u001b[38;5;129;01mand\u001b[39;00m args[\u001b[38;5;241m0\u001b[39m] \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mallowed_attributes:\n\u001b[0;32m---> 79\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m     80\u001b[0m         \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mReceived invalid attributes \u001b[39m\u001b[38;5;132;01m{\u001b[39;00margs[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m. Allowed attributes are \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     81\u001b[0m         \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mallowed_attributes\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     82\u001b[0m     )\n\u001b[1;32m     83\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m Comparison(comparator\u001b[38;5;241m=\u001b[39mfunc, attribute\u001b[38;5;241m=\u001b[39margs[\u001b[38;5;241m0\u001b[39m], value\u001b[38;5;241m=\u001b[39margs[\u001b[38;5;241m1\u001b[39m])\n",
      "\u001b[0;31mValueError\u001b[0m: Received invalid attributes description. Allowed attributes are ['onsiterate', 'maxoccupancy', 'city', 'country', 'starrating', 'mealsincluded']",
      "\nDuring handling of the above exception, another exception occurred:\n",
      "\u001b[0;31mOutputParserException\u001b[0m                     Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[21], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mchain\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\u001b[43m{\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mquery\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mI want to stay somewhere highly rated along the coast. I want a room with a patio and a fireplace.\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/langchain/libs/langchain/langchain/schema/runnable/base.py:1113\u001b[0m, in \u001b[0;36mRunnableSequence.invoke\u001b[0;34m(self, input, config)\u001b[0m\n\u001b[1;32m   1111\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m   1112\u001b[0m     \u001b[38;5;28;01mfor\u001b[39;00m i, step \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msteps):\n\u001b[0;32m-> 1113\u001b[0m         \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[43mstep\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1114\u001b[0m \u001b[43m            \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1115\u001b[0m \u001b[43m            \u001b[49m\u001b[38;5;66;43;03m# mark each step as a child run\u001b[39;49;00m\n\u001b[1;32m   1116\u001b[0m \u001b[43m            \u001b[49m\u001b[43mpatch_config\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1117\u001b[0m \u001b[43m                \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_child\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mseq:step:\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mi\u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1118\u001b[0m \u001b[43m            \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1119\u001b[0m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1120\u001b[0m \u001b[38;5;66;03m# finish the root run\u001b[39;00m\n\u001b[1;32m   1121\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
      "File \u001b[0;32m~/langchain/libs/langchain/langchain/schema/output_parser.py:173\u001b[0m, in \u001b[0;36mBaseOutputParser.invoke\u001b[0;34m(self, input, config)\u001b[0m\n\u001b[1;32m    169\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minvoke\u001b[39m(\n\u001b[1;32m    170\u001b[0m     \u001b[38;5;28mself\u001b[39m, \u001b[38;5;28minput\u001b[39m: Union[\u001b[38;5;28mstr\u001b[39m, BaseMessage], config: Optional[RunnableConfig] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m    171\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m T:\n\u001b[1;32m    172\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28minput\u001b[39m, BaseMessage):\n\u001b[0;32m--> 173\u001b[0m         \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_with_config\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    174\u001b[0m \u001b[43m            \u001b[49m\u001b[38;5;28;43;01mlambda\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43minner_input\u001b[49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparse_result\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    175\u001b[0m \u001b[43m                \u001b[49m\u001b[43m[\u001b[49m\u001b[43mChatGeneration\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmessage\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minner_input\u001b[49m\u001b[43m)\u001b[49m\u001b[43m]\u001b[49m\n\u001b[1;32m    176\u001b[0m \u001b[43m            \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    177\u001b[0m \u001b[43m            \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m    178\u001b[0m \u001b[43m            \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    179\u001b[0m \u001b[43m            \u001b[49m\u001b[43mrun_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mparser\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m    180\u001b[0m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    181\u001b[0m     \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m    182\u001b[0m         \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call_with_config(\n\u001b[1;32m    183\u001b[0m             \u001b[38;5;28;01mlambda\u001b[39;00m inner_input: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mparse_result([Generation(text\u001b[38;5;241m=\u001b[39minner_input)]),\n\u001b[1;32m    184\u001b[0m             \u001b[38;5;28minput\u001b[39m,\n\u001b[1;32m    185\u001b[0m             config,\n\u001b[1;32m    186\u001b[0m             run_type\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mparser\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m    187\u001b[0m         )\n",
      "File \u001b[0;32m~/langchain/libs/langchain/langchain/schema/runnable/base.py:633\u001b[0m, in \u001b[0;36mRunnable._call_with_config\u001b[0;34m(self, func, input, config, run_type, **kwargs)\u001b[0m\n\u001b[1;32m    626\u001b[0m run_manager \u001b[38;5;241m=\u001b[39m callback_manager\u001b[38;5;241m.\u001b[39mon_chain_start(\n\u001b[1;32m    627\u001b[0m     dumpd(\u001b[38;5;28mself\u001b[39m),\n\u001b[1;32m    628\u001b[0m     \u001b[38;5;28minput\u001b[39m,\n\u001b[1;32m    629\u001b[0m     run_type\u001b[38;5;241m=\u001b[39mrun_type,\n\u001b[1;32m    630\u001b[0m     name\u001b[38;5;241m=\u001b[39mconfig\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_name\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[1;32m    631\u001b[0m )\n\u001b[1;32m    632\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 633\u001b[0m     output \u001b[38;5;241m=\u001b[39m \u001b[43mcall_func_with_variable_args\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    634\u001b[0m \u001b[43m        \u001b[49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[1;32m    635\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    636\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m    637\u001b[0m     run_manager\u001b[38;5;241m.\u001b[39mon_chain_error(e)\n",
      "File \u001b[0;32m~/langchain/libs/langchain/langchain/schema/runnable/config.py:173\u001b[0m, in \u001b[0;36mcall_func_with_variable_args\u001b[0;34m(func, input, run_manager, config, **kwargs)\u001b[0m\n\u001b[1;32m    171\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m accepts_run_manager(func):\n\u001b[1;32m    172\u001b[0m     kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_manager\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m run_manager\n\u001b[0;32m--> 173\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/langchain/libs/langchain/langchain/schema/output_parser.py:174\u001b[0m, in \u001b[0;36mBaseOutputParser.invoke.<locals>.<lambda>\u001b[0;34m(inner_input)\u001b[0m\n\u001b[1;32m    169\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minvoke\u001b[39m(\n\u001b[1;32m    170\u001b[0m     \u001b[38;5;28mself\u001b[39m, \u001b[38;5;28minput\u001b[39m: Union[\u001b[38;5;28mstr\u001b[39m, BaseMessage], config: Optional[RunnableConfig] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m    171\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m T:\n\u001b[1;32m    172\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28minput\u001b[39m, BaseMessage):\n\u001b[1;32m    173\u001b[0m         \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call_with_config(\n\u001b[0;32m--> 174\u001b[0m             \u001b[38;5;28;01mlambda\u001b[39;00m inner_input: \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparse_result\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    175\u001b[0m \u001b[43m                \u001b[49m\u001b[43m[\u001b[49m\u001b[43mChatGeneration\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmessage\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minner_input\u001b[49m\u001b[43m)\u001b[49m\u001b[43m]\u001b[49m\n\u001b[1;32m    176\u001b[0m \u001b[43m            \u001b[49m\u001b[43m)\u001b[49m,\n\u001b[1;32m    177\u001b[0m             \u001b[38;5;28minput\u001b[39m,\n\u001b[1;32m    178\u001b[0m             config,\n\u001b[1;32m    179\u001b[0m             run_type\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mparser\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m    180\u001b[0m         )\n\u001b[1;32m    181\u001b[0m     \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m    182\u001b[0m         \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call_with_config(\n\u001b[1;32m    183\u001b[0m             \u001b[38;5;28;01mlambda\u001b[39;00m inner_input: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mparse_result([Generation(text\u001b[38;5;241m=\u001b[39minner_input)]),\n\u001b[1;32m    184\u001b[0m             \u001b[38;5;28minput\u001b[39m,\n\u001b[1;32m    185\u001b[0m             config,\n\u001b[1;32m    186\u001b[0m             run_type\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mparser\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m    187\u001b[0m         )\n",
      "File \u001b[0;32m~/langchain/libs/langchain/langchain/schema/output_parser.py:225\u001b[0m, in \u001b[0;36mBaseOutputParser.parse_result\u001b[0;34m(self, result, partial)\u001b[0m\n\u001b[1;32m    212\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mparse_result\u001b[39m(\u001b[38;5;28mself\u001b[39m, result: List[Generation], \u001b[38;5;241m*\u001b[39m, partial: \u001b[38;5;28mbool\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m T:\n\u001b[1;32m    213\u001b[0m \u001b[38;5;250m    \u001b[39m\u001b[38;5;124;03m\"\"\"Parse a list of candidate model Generations into a specific format.\u001b[39;00m\n\u001b[1;32m    214\u001b[0m \n\u001b[1;32m    215\u001b[0m \u001b[38;5;124;03m    The return value is parsed from only the first Generation in the result, which\u001b[39;00m\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    223\u001b[0m \u001b[38;5;124;03m        Structured output.\u001b[39;00m\n\u001b[1;32m    224\u001b[0m \u001b[38;5;124;03m    \"\"\"\u001b[39;00m\n\u001b[0;32m--> 225\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparse\u001b[49m\u001b[43m(\u001b[49m\u001b[43mresult\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtext\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/langchain/libs/langchain/langchain/chains/query_constructor/base.py:60\u001b[0m, in \u001b[0;36mStructuredQueryOutputParser.parse\u001b[0;34m(self, text)\u001b[0m\n\u001b[1;32m     56\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m StructuredQuery(\n\u001b[1;32m     57\u001b[0m         \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39m{k: v \u001b[38;5;28;01mfor\u001b[39;00m k, v \u001b[38;5;129;01min\u001b[39;00m parsed\u001b[38;5;241m.\u001b[39mitems() \u001b[38;5;28;01mif\u001b[39;00m k \u001b[38;5;129;01min\u001b[39;00m allowed_keys}\n\u001b[1;32m     58\u001b[0m     )\n\u001b[1;32m     59\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m---> 60\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m OutputParserException(\n\u001b[1;32m     61\u001b[0m         \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mParsing text\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mtext\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m raised following error:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00me\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     62\u001b[0m     )\n",
      "\u001b[0;31mOutputParserException\u001b[0m: Parsing text\n```json\n{\n    \"query\": \"highly rated, coast, patio, fireplace\",\n    \"filter\": \"and(eq(\\\"starrating\\\", 4), contain(\\\"description\\\", \\\"coast\\\"), contain(\\\"description\\\", \\\"patio\\\"), contain(\\\"description\\\", \\\"fireplace\\\"))\"\n}\n```\n raised following error:\nReceived invalid attributes description. Allowed attributes are ['onsiterate', 'maxoccupancy', 'city', 'country', 'starrating', 'mealsincluded']"
     ]
    }
   ],
   "source": [
    "chain.invoke(\n",
    "    {\n",
    "        \"query\": \"I want to stay somewhere highly rated along the coast. I want a room with a patio and a fireplace.\"\n",
    "    }\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c845a5e3-9a4c-4f8d-b5af-6493fd0186cb",
   "metadata": {},
   "source": [
    "## Automatically ignoring invalid queries\n",
    "\n",
    "It seems our model get's tripped up on this more complex query and tries to search over an attribute ('description') that doesn't exist. By setting `fix_invalid=True` in our query constructor chain, we can automatically remove any parts of the filter that is invalid (meaning it's using disallowed operations, comparisons or attributes)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "fff986c4-ba52-4619-afdb-b0545834c0f8",
   "metadata": {},
   "outputs": [],
   "source": [
    "chain = load_query_constructor_runnable(\n",
    "    ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0),\n",
    "    doc_contents,\n",
    "    filter_attribute_info,\n",
    "    examples=examples,\n",
    "    fix_invalid=True,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "bdafa338-ca2f-4587-9457-472a6b9a9b27",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "StructuredQuery(query='highly rated, coast, patio, fireplace', filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='starrating', value=4), limit=None)"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "chain.invoke(\n",
    "    {\n",
    "        \"query\": \"I want to stay somewhere highly rated along the coast. I want a room with a patio and a fireplace.\"\n",
    "    }\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8251d117-8406-48b1-b331-0fe597b57051",
   "metadata": {},
   "source": [
    "## Using with a self-querying retriever\n",
    "\n",
    "Now that our query construction chain is in a decent place, let's try using it with an actual retriever. For this example we'll use the [ElasticsearchStore](https://python.langchain.com/docs/integrations/vectorstores/elasticsearch)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "id": "06f30efe-f96a-4baa-9571-1de01596a5ac",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_elasticsearch import ElasticsearchStore\n",
    "from langchain_openai import OpenAIEmbeddings\n",
    "\n",
    "embeddings = OpenAIEmbeddings()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e468e0f6-fc1b-42ab-bf88-7088d8e1aad0",
   "metadata": {},
   "source": [
    "## Populating vectorstore\n",
    "\n",
    "The first time you run this, uncomment the below cell to first index the data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "id": "1f73c1ff-bdb4-4c27-bfa3-c15a1b886244",
   "metadata": {},
   "outputs": [],
   "source": [
    "# docs = []\n",
    "# for _, room in latest_price.fillna(\"\").iterrows():\n",
    "#     doc = Document(\n",
    "#         page_content=json.dumps(room.to_dict(), indent=2),\n",
    "#         metadata=room.to_dict()\n",
    "#     )\n",
    "#     docs.append(doc)\n",
    "# vecstore = ElasticsearchStore.from_documents(\n",
    "#     docs,\n",
    "#     embeddings,\n",
    "#     es_url=\"http://localhost:9200\",\n",
    "#     index_name=\"hotel_rooms\",\n",
    "#     # strategy=ElasticsearchStore.ApproxRetrievalStrategy(\n",
    "#     #     hybrid=True,\n",
    "#     # )\n",
    "# )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "id": "411af3ff-29e2-4042-9060-15f75c4fa0e9",
   "metadata": {},
   "outputs": [],
   "source": [
    "vecstore = ElasticsearchStore(\n",
    "    \"hotel_rooms\",\n",
    "    embedding=embeddings,\n",
    "    es_url=\"http://localhost:9200\",\n",
    "    # strategy=ElasticsearchStore.ApproxRetrievalStrategy(hybrid=True) # seems to not be available in community version\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "id": "309490df-5a5f-4ff6-863b-5a85b8811b44",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.retrievers import SelfQueryRetriever\n",
    "\n",
    "retriever = SelfQueryRetriever(\n",
    "    query_constructor=chain, vectorstore=vecstore, verbose=True\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "id": "3e6aaca9-dd22-403b-8714-23b20137f483",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{\n",
      "  \"roomtype\": \"Three-Bedroom House With Sea View\",\n",
      "  \"onsiterate\": 341.75,\n",
      "  \"roomamenities\": \"Additional bathroom: ;Additional toilet: ;Air conditioning: ;Closet: ;Clothes dryer: ;Coffee/tea maker: ;Dishwasher: ;DVD/CD player: ;Fireplace: ;Free Wi-Fi in all rooms!: ;Full kitchen: ;Hair dryer: ;Heating: ;High chair: ;In-room safe box: ;Ironing facilities: ;Kitchenware: ;Linens: ;Microwave: ;Private entrance: ;Refrigerator: ;Seating area: ;Separate dining area: ;Smoke detector: ;Sofa: ;Towels: ;TV [flat screen]: ;Washing machine: ;\",\n",
      "  \"maxoccupancy\": 6,\n",
      "  \"roomdescription\": \"Room size: 125 m\\u00b2/1345 ft\\u00b2, 2 bathrooms, Shower and bathtub, Shared bathroom, Kitchenette, 3 bedrooms, 1 double bed or 2 single beds or 1 double bed\",\n",
      "  \"hotelname\": \"Downings Coastguard Cottages - Type B-E\",\n",
      "  \"city\": \"Downings\",\n",
      "  \"country\": \"Ireland\",\n",
      "  \"starrating\": 4,\n",
      "  \"mealsincluded\": false\n",
      "}\n",
      "\n",
      "--------------------\n",
      "\n",
      "{\n",
      "  \"roomtype\": \"Three-Bedroom House With Sea View\",\n",
      "  \"onsiterate\": 774.05,\n",
      "  \"roomamenities\": \"Additional bathroom: ;Additional toilet: ;Air conditioning: ;Closet: ;Clothes dryer: ;Coffee/tea maker: ;Dishwasher: ;DVD/CD player: ;Fireplace: ;Free Wi-Fi in all rooms!: ;Full kitchen: ;Hair dryer: ;Heating: ;High chair: ;In-room safe box: ;Ironing facilities: ;Kitchenware: ;Linens: ;Microwave: ;Private entrance: ;Refrigerator: ;Seating area: ;Separate dining area: ;Smoke detector: ;Sofa: ;Towels: ;TV [flat screen]: ;Washing machine: ;\",\n",
      "  \"maxoccupancy\": 6,\n",
      "  \"roomdescription\": \"Room size: 125 m\\u00b2/1345 ft\\u00b2, 2 bathrooms, Shower and bathtub, Shared bathroom, Kitchenette, 3 bedrooms, 1 double bed or 2 single beds or 1 double bed\",\n",
      "  \"hotelname\": \"Downings Coastguard Cottages - Type B-E\",\n",
      "  \"city\": \"Downings\",\n",
      "  \"country\": \"Ireland\",\n",
      "  \"starrating\": 4,\n",
      "  \"mealsincluded\": false\n",
      "}\n",
      "\n",
      "--------------------\n",
      "\n",
      "{\n",
      "  \"roomtype\": \"Four-Bedroom Apartment with Sea View\",\n",
      "  \"onsiterate\": 501.24,\n",
      "  \"roomamenities\": \"Additional toilet: ;Air conditioning: ;Carpeting: ;Cleaning products: ;Closet: ;Clothes dryer: ;Clothes rack: ;Coffee/tea maker: ;Dishwasher: ;DVD/CD player: ;Fireplace: ;Free Wi-Fi in all rooms!: ;Full kitchen: ;Hair dryer: ;Heating: ;High chair: ;In-room safe box: ;Ironing facilities: ;Kitchenware: ;Linens: ;Microwave: ;Private entrance: ;Refrigerator: ;Seating area: ;Separate dining area: ;Smoke detector: ;Sofa: ;Toiletries: ;Towels: ;TV [flat screen]: ;Wake-up service: ;Washing machine: ;\",\n",
      "  \"maxoccupancy\": 9,\n",
      "  \"roomdescription\": \"Room size: 110 m\\u00b2/1184 ft\\u00b2, Balcony/terrace, Shower and bathtub, Kitchenette, 4 bedrooms, 1 single bed or 1 queen bed or 1 double bed or 2 single beds\",\n",
      "  \"hotelname\": \"1 Elliot Terrace\",\n",
      "  \"city\": \"Plymouth\",\n",
      "  \"country\": \"United Kingdom\",\n",
      "  \"starrating\": 4,\n",
      "  \"mealsincluded\": false\n",
      "}\n",
      "\n",
      "--------------------\n",
      "\n",
      "{\n",
      "  \"roomtype\": \"Three-Bedroom Holiday Home with Terrace and Sea View\",\n",
      "  \"onsiterate\": 295.83,\n",
      "  \"roomamenities\": \"Air conditioning: ;Dishwasher: ;Free Wi-Fi in all rooms!: ;Full kitchen: ;Heating: ;In-room safe box: ;Kitchenware: ;Private entrance: ;Refrigerator: ;Satellite/cable channels: ;Seating area: ;Separate dining area: ;Sofa: ;Washing machine: ;\",\n",
      "  \"maxoccupancy\": 1,\n",
      "  \"roomdescription\": \"Room size: 157 m\\u00b2/1690 ft\\u00b2, Balcony/terrace, 3 bathrooms, Shower, Kitchenette, 3 bedrooms, 1 queen bed or 1 queen bed or 1 queen bed or 1 sofa bed\",\n",
      "  \"hotelname\": \"Seaside holiday house Artatore (Losinj) - 17102\",\n",
      "  \"city\": \"Mali Losinj\",\n",
      "  \"country\": \"Croatia\",\n",
      "  \"starrating\": 4,\n",
      "  \"mealsincluded\": false\n",
      "}\n",
      "\n",
      "--------------------\n",
      "\n"
     ]
    }
   ],
   "source": [
    "results = retriever.invoke(\n",
    "    \"I want to stay somewhere highly rated along the coast. I want a room with a patio and a fireplace.\"\n",
    ")\n",
    "for res in results:\n",
    "    print(res.page_content)\n",
    "    print(\"\\n\" + \"-\" * 20 + \"\\n\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8adec291-5853-4d2d-ab5d-294164f07f73",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "poetry-venv",
   "language": "python",
   "name": "poetry-venv"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}