import re import gradio as gr import torch from transformers import DonutProcessor, VisionEncoderDecoderModel processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa") model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa") device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) def process_document(image, *questions): output = [] for question in questions: # prepare encoder inputs pixel_values = processor(image, return_tensors="pt").pixel_values # prepare decoder inputs task_prompt = "{user_input}" prompt = task_prompt.replace("{user_input}", question) decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids # generate answer outputs = model.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_position_embeddings, early_stopping=True, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) # postprocess sequence = processor.batch_decode(outputs.sequences)[0] sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token output.append(processor.token2json(sequence)) return output description = "Gradio Demo for Donut, an instance of `VisionEncoderDecoderModel` fine-tuned on DocVQA (document visual question answering). To use it, simply upload your image and type a question and click 'submit', or click one of the examples to load them. Read more at the links below." article = "

Donut: OCR-free Document Understanding Transformer | Github Repo

" vqa_questions = {} vqa_questions["ACCOUNT/BILL NUMBER"] = "What is the account or bill number?" vqa_questions["TOTAL"] = "What is the total amount or total price?" vqa_questions["ITEMS"] = "What are the items?" vqa_questions["GST AMOUNT"] = "What is the GST or tax amount?" vqa_questions["GST NO."] = "What is the GST number?" vqa_questions[ "SELLER/BILLING DETAILS" ] = "What are the seller details or billing details" vqa_questions["BILLING ADDRESS"] = "What is the billing address?" demo = gr.Interface( fn=process_document, inputs=["image"] + [gr.components.Textbox(value=question) for question in vqa_questions.values()], outputs="json", title="Demo: Donut 🍩 for DocVQA", description=description, article=article, enable_queue=True, # examples=[["example_3.jpg", "What is the total?"], ["example_1.png", "When is the coffee break?"], ["example_2.jpeg", "What's the population of Stoddard?"]], cache_examples=False) demo.launch()