import argparse from collections import namedtuple import numpy as np import torch import cv2,os import torch import torch.nn.functional as F from collections import defaultdict from sklearn.cluster import DBSCAN """ taken from https://github.com/githubharald/WordDetectorNN Download the models from https://www.dropbox.com/s/mqhco2q67ovpfjq/model.zip?dl=1 and pass the path to word_segment(.) as argument. """ from typing import Type, Any, Callable, Union, List, Optional import torch.nn as nn from torch import Tensor def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d: """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d: """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion: int = 1 def __init__( self, inplanes: int, planes: int, stride: int = 1, downsample: Optional[nn.Module] = None, groups: int = 1, base_width: int = 64, dilation: int = 1, norm_layer: Optional[Callable[..., nn.Module]] = None ) -> None: super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError('BasicBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x: Tensor) -> Tensor: identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) # while original implementation places the stride at the first 1x1 convolution(self.conv1) # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385. # This variant is also known as ResNet V1.5 and improves accuracy according to # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. expansion: int = 4 def __init__( self, inplanes: int, planes: int, stride: int = 1, downsample: Optional[nn.Module] = None, groups: int = 1, base_width: int = 64, dilation: int = 1, norm_layer: Optional[Callable[..., nn.Module]] = None ) -> None: super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x: Tensor) -> Tensor: identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet(nn.Module): def __init__( self, block: Type[Union[BasicBlock, Bottleneck]], layers: List[int], num_classes: int = 1000, zero_init_residual: bool = False, groups: int = 1, width_per_group: int = 64, replace_stride_with_dilation: Optional[List[bool]] = None, norm_layer: Optional[Callable[..., nn.Module]] = None ) -> None: super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(1, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type] elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type] def _make_layer(self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int, stride: int = 1, dilate: bool = False) -> nn.Sequential: norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def _forward_impl(self, x: Tensor) -> Tensor: # See note [TorchScript super()] x = self.conv1(x) x = self.bn1(x) out1 = self.relu(x) x = self.maxpool(out1) out2 = self.layer1(x) out3 = self.layer2(out2) out4 = self.layer3(out3) out5 = self.layer4(out4) return out5, out4, out3, out2, out1 def forward(self, x: Tensor) -> Tensor: return self._forward_impl(x) def _resnet( arch: str, block: Type[Union[BasicBlock, Bottleneck]], layers: List[int], pretrained: bool, progress: bool, **kwargs: Any ) -> ResNet: model = ResNet(block, layers, **kwargs) return model def resnet18(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: r"""ResNet-18 model from `"Deep Residual Learning for Image Recognition" `_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs) def resnet34(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: r"""ResNet-34 model from `"Deep Residual Learning for Image Recognition" `_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: r"""ResNet-50 model from `"Deep Residual Learning for Image Recognition" `_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnet101(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: r"""ResNet-101 model from `"Deep Residual Learning for Image Recognition" `_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs) def resnet152(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: r"""ResNet-152 model from `"Deep Residual Learning for Image Recognition" `_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress, **kwargs) def resnext50_32x4d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: r"""ResNeXt-50 32x4d model from `"Aggregated Residual Transformation for Deep Neural Networks" `_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['groups'] = 32 kwargs['width_per_group'] = 4 return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnext101_32x8d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: r"""ResNeXt-101 32x8d model from `"Aggregated Residual Transformation for Deep Neural Networks" `_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['groups'] = 32 kwargs['width_per_group'] = 8 return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs) def wide_resnet50_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: r"""Wide ResNet-50-2 model from `"Wide Residual Networks" `_. The model is the same as ResNet except for the bottleneck number of channels which is twice larger in every block. The number of channels in outer 1x1 convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 channels, and in Wide ResNet-50-2 has 2048-1024-2048. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['width_per_group'] = 64 * 2 return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def wide_resnet101_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: r"""Wide ResNet-101-2 model from `"Wide Residual Networks" `_. The model is the same as ResNet except for the bottleneck number of channels which is twice larger in every block. The number of channels in outer 1x1 convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 channels, and in Wide ResNet-50-2 has 2048-1024-2048. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['width_per_group'] = 64 * 2 return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs) def compute_iou(ra, rb): """intersection over union of two axis aligned rectangles ra and rb""" if ra.xmax < rb.xmin or rb.xmax < ra.xmin or ra.ymax < rb.ymin or rb.ymax < ra.ymin: return 0 l = max(ra.xmin, rb.xmin) r = min(ra.xmax, rb.xmax) t = max(ra.ymin, rb.ymin) b = min(ra.ymax, rb.ymax) intersection = (r - l) * (b - t) union = ra.area() + rb.area() - intersection iou = intersection / union return iou def compute_dist_mat(aabbs): """Jaccard distance matrix of all pairs of aabbs""" num_aabbs = len(aabbs) dists = np.zeros((num_aabbs, num_aabbs)) for i in range(num_aabbs): for j in range(num_aabbs): if j > i: break dists[i, j] = dists[j, i] = 1 - compute_iou(aabbs[i], aabbs[j]) return dists def cluster_aabbs(aabbs): """cluster aabbs using DBSCAN and the Jaccard distance between bounding boxes""" if len(aabbs) < 2: return aabbs dists = compute_dist_mat(aabbs) clustering = DBSCAN(eps=0.7, min_samples=3, metric='precomputed').fit(dists) clusters = defaultdict(list) for i, c in enumerate(clustering.labels_): if c == -1: continue clusters[c].append(aabbs[i]) res_aabbs = [] for curr_cluster in clusters.values(): xmin = np.median([aabb.xmin for aabb in curr_cluster]) xmax = np.median([aabb.xmax for aabb in curr_cluster]) ymin = np.median([aabb.ymin for aabb in curr_cluster]) ymax = np.median([aabb.ymax for aabb in curr_cluster]) res_aabbs.append(AABB(xmin, xmax, ymin, ymax)) return res_aabbs class AABB: """axis aligned bounding box""" def __init__(self, xmin, xmax, ymin, ymax): self.xmin = xmin self.xmax = xmax self.ymin = ymin self.ymax = ymax def scale(self, fx, fy): new = AABB(self.xmin, self.xmax, self.ymin, self.ymax) new.xmin = fx * new.xmin new.xmax = fx * new.xmax new.ymin = fy * new.ymin new.ymax = fy * new.ymax return new def scale_around_center(self, fx, fy): cx = (self.xmin + self.xmax) / 2 cy = (self.ymin + self.ymax) / 2 new = AABB(self.xmin, self.xmax, self.ymin, self.ymax) new.xmin = cx - fx * (cx - self.xmin) new.xmax = cx + fx * (self.xmax - cx) new.ymin = cy - fy * (cy - self.ymin) new.ymax = cy + fy * (self.ymax - cy) return new def translate(self, tx, ty): new = AABB(self.xmin, self.xmax, self.ymin, self.ymax) new.xmin = new.xmin + tx new.xmax = new.xmax + tx new.ymin = new.ymin + ty new.ymax = new.ymax + ty return new def as_type(self, t): new = AABB(self.xmin, self.xmax, self.ymin, self.ymax) new.xmin = t(new.xmin) new.xmax = t(new.xmax) new.ymin = t(new.ymin) new.ymax = t(new.ymax) return new def enlarge_to_int_grid(self): new = AABB(self.xmin, self.xmax, self.ymin, self.ymax) new.xmin = np.floor(new.xmin) new.xmax = np.ceil(new.xmax) new.ymin = np.floor(new.ymin) new.ymax = np.ceil(new.ymax) return new def clip(self, clip_aabb): new = AABB(self.xmin, self.xmax, self.ymin, self.ymax) new.xmin = min(max(new.xmin, clip_aabb.xmin), clip_aabb.xmax) new.xmax = max(min(new.xmax, clip_aabb.xmax), clip_aabb.xmin) new.ymin = min(max(new.ymin, clip_aabb.ymin), clip_aabb.ymax) new.ymax = max(min(new.ymax, clip_aabb.ymax), clip_aabb.ymin) return new def area(self): return (self.xmax - self.xmin) * (self.ymax - self.ymin) def __str__(self): return f'AABB(xmin={self.xmin},xmax={self.xmax},ymin={self.ymin},ymax={self.ymax})' def __repr__(self): return str(self) class MapOrdering: """order of the maps encoding the aabbs around the words""" SEG_WORD = 0 SEG_SURROUNDING = 1 SEG_BACKGROUND = 2 GEO_TOP = 3 GEO_BOTTOM = 4 GEO_LEFT = 5 GEO_RIGHT = 6 NUM_MAPS = 7 def encode(shape, gt, f=1.0): gt_map = np.zeros((MapOrdering.NUM_MAPS,) + shape) for aabb in gt: aabb = aabb.scale(f, f) # segmentation map aabb_clip = AABB(0, shape[0] - 1, 0, shape[1] - 1) aabb_word = aabb.scale_around_center(0.5, 0.5).as_type(int).clip(aabb_clip) aabb_sur = aabb.as_type(int).clip(aabb_clip) gt_map[MapOrdering.SEG_SURROUNDING, aabb_sur.ymin:aabb_sur.ymax + 1, aabb_sur.xmin:aabb_sur.xmax + 1] = 1 gt_map[MapOrdering.SEG_SURROUNDING, aabb_word.ymin:aabb_word.ymax + 1, aabb_word.xmin:aabb_word.xmax + 1] = 0 gt_map[MapOrdering.SEG_WORD, aabb_word.ymin:aabb_word.ymax + 1, aabb_word.xmin:aabb_word.xmax + 1] = 1 # geometry map TODO vectorize for x in range(aabb_word.xmin, aabb_word.xmax + 1): for y in range(aabb_word.ymin, aabb_word.ymax + 1): gt_map[MapOrdering.GEO_TOP, y, x] = y - aabb.ymin gt_map[MapOrdering.GEO_BOTTOM, y, x] = aabb.ymax - y gt_map[MapOrdering.GEO_LEFT, y, x] = x - aabb.xmin gt_map[MapOrdering.GEO_RIGHT, y, x] = aabb.xmax - x gt_map[MapOrdering.SEG_BACKGROUND] = np.clip(1 - gt_map[MapOrdering.SEG_WORD] - gt_map[MapOrdering.SEG_SURROUNDING], 0, 1) return gt_map def subsample(idx, max_num): """restrict fg indices to a maximum number""" f = len(idx[0]) / max_num if f > 1: a = np.asarray([idx[0][int(j * f)] for j in range(max_num)], np.int64) b = np.asarray([idx[1][int(j * f)] for j in range(max_num)], np.int64) idx = (a, b) return idx def fg_by_threshold(thres, max_num=None): """all pixels above threshold are fg pixels, optionally limited to a maximum number""" def func(seg_map): idx = np.where(seg_map > thres) if max_num is not None: idx = subsample(idx, max_num) return idx return func def fg_by_cc(thres, max_num): """take a maximum number of pixels per connected component, but at least 3 (->DBSCAN minPts)""" def func(seg_map): seg_mask = (seg_map > thres).astype(np.uint8) num_labels, label_img = cv2.connectedComponents(seg_mask, connectivity=4) max_num_per_cc = max(max_num // (num_labels + 1), 3) # at least 3 because of DBSCAN clustering all_idx = [np.empty(0, np.int64), np.empty(0, np.int64)] for curr_label in range(1, num_labels): curr_idx = np.where(label_img == curr_label) curr_idx = subsample(curr_idx, max_num_per_cc) all_idx[0] = np.append(all_idx[0], curr_idx[0]) all_idx[1] = np.append(all_idx[1], curr_idx[1]) return tuple(all_idx) return func def decode(pred_map, comp_fg=fg_by_threshold(0.5), f=1): idx = comp_fg(pred_map[MapOrdering.SEG_WORD]) pred_map_masked = pred_map[..., idx[0], idx[1]] aabbs = [] for yc, xc, pred in zip(idx[0], idx[1], pred_map_masked.T): t = pred[MapOrdering.GEO_TOP] b = pred[MapOrdering.GEO_BOTTOM] l = pred[MapOrdering.GEO_LEFT] r = pred[MapOrdering.GEO_RIGHT] aabb = AABB(xc - l, xc + r, yc - t, yc + b) aabbs.append(aabb.scale(f, f)) return aabbs def main(): import matplotlib.pyplot as plt aabbs_in = [AABB(10, 30, 30, 60)] encoded = encode((50, 50), aabbs_in, f=0.5) aabbs_out = decode(encoded, f=2) print(aabbs_out[0]) plt.subplot(151) plt.imshow(encoded[MapOrdering.SEG_WORD:MapOrdering.SEG_BACKGROUND + 1].transpose(1, 2, 0)) plt.subplot(152) plt.imshow(encoded[MapOrdering.GEO_TOP]) plt.subplot(153) plt.imshow(encoded[MapOrdering.GEO_BOTTOM]) plt.subplot(154) plt.imshow(encoded[MapOrdering.GEO_LEFT]) plt.subplot(155) plt.imshow(encoded[MapOrdering.GEO_RIGHT]) plt.show() def compute_scale_down(input_size, output_size): """compute scale down factor of neural network, given input and output size""" return output_size[0] / input_size[0] def prob_true(p): """return True with probability p""" return np.random.random() < p class UpscaleAndConcatLayer(torch.nn.Module): """ take small map with cx channels upscale to size of large map (s*s) concat large map with cy channels and upscaled small map apply conv and output map with cz channels """ def __init__(self, cx, cy, cz): super(UpscaleAndConcatLayer, self).__init__() self.conv = torch.nn.Conv2d(cx + cy, cz, 3, padding=1) def forward(self, x, y, s): x = F.interpolate(x, s) z = torch.cat((x, y), 1) z = F.relu(self.conv(z)) return z class WordDetectorNet(torch.nn.Module): # fixed sizes for training input_size = (448, 448) output_size = (224, 224) scale_down = compute_scale_down(input_size, output_size) def __init__(self): super(WordDetectorNet, self).__init__() self.backbone = resnet18() self.up1 = UpscaleAndConcatLayer(512, 256, 256) # input//16 self.up2 = UpscaleAndConcatLayer(256, 128, 128) # input//8 self.up3 = UpscaleAndConcatLayer(128, 64, 64) # input//4 self.up4 = UpscaleAndConcatLayer(64, 64, 32) # input//2 self.conv1 = torch.nn.Conv2d(32, MapOrdering.NUM_MAPS, 3, 1, padding=1) @staticmethod def scale_shape(s, f): assert s[0] % f == 0 and s[1] % f == 0 return s[0] // f, s[1] // f def output_activation(self, x, apply_softmax): if apply_softmax: seg = torch.softmax(x[:, MapOrdering.SEG_WORD:MapOrdering.SEG_BACKGROUND + 1], dim=1) else: seg = x[:, MapOrdering.SEG_WORD:MapOrdering.SEG_BACKGROUND + 1] geo = torch.sigmoid(x[:, MapOrdering.GEO_TOP:]) * self.input_size[0] y = torch.cat([seg, geo], dim=1) return y def forward(self, x, apply_softmax=False): # x: BxCxHxW # eval backbone with 448px: bb1: 224px, bb2: 112px, bb3: 56px, bb4: 28px, bb5: 14px s = x.shape[2:] bb5, bb4, bb3, bb2, bb1 = self.backbone(x) x = self.up1(bb5, bb4, self.scale_shape(s, 16)) x = self.up2(x, bb3, self.scale_shape(s, 8)) x = self.up3(x, bb2, self.scale_shape(s, 4)) x = self.up4(x, bb1, self.scale_shape(s, 2)) x = self.conv1(x) return self.output_activation(x, apply_softmax) def ceil32(val): if val % 32 == 0: return val val = (val // 32 + 1) * 32 return val def word_segment(path, output_folder, model_path): os.makedirs(output_folder, exist_ok = True) max_side_len = 5000 thres = 0.5 max_aabbs = 1000 orig = cv2.imread(path, cv2.IMREAD_GRAYSCALE) net = WordDetectorNet() net.load_state_dict(torch.load(model_path, map_location='cuda')) net.eval() net.cuda() f = min(max_side_len / orig.shape[0], max_side_len / orig.shape[1]) if f < 1: orig = cv2.resize(orig, dsize=None, fx=f, fy=f) img = np.ones((ceil32(orig.shape[0]), ceil32(orig.shape[1])), np.uint8) * 255 img[:orig.shape[0], :orig.shape[1]] = orig img = (img / 255 - 0.5).astype(np.float32) imgs = img[None, None, ...] imgs = torch.from_numpy(imgs).cuda() with torch.no_grad(): y = net(imgs, apply_softmax=True) y_np = y.to('cpu').numpy() scale_up = 1 / compute_scale_down(WordDetectorNet.input_size, WordDetectorNet.output_size) img_np = imgs[0, 0].to('cpu').numpy() pred_map = y_np[0] aabbs = decode(pred_map, comp_fg=fg_by_cc(thres, max_aabbs), f=scale_up) h, w = img_np.shape aabbs = [aabb.clip(AABB(0, w - 1, 0, h - 1)) for aabb in aabbs] # bounding box must be inside img clustered_aabbs = cluster_aabbs(aabbs) img = cv2.imread(path, cv2.IMREAD_GRAYSCALE) for idx,bb in enumerate(clustered_aabbs): bb1 = bb im_i = (img_np[int(bb1.ymin):int(bb1.ymax),int(bb1.xmin):int(bb1.xmax)]+0.5)*255 cv2.imwrite(f'{output_folder}/im_{idx}.png',im_i)