# Import the libraries import os import time import json import uuid import joblib import pandas as pd import gradio as gr import math from huggingface_hub import CommitScheduler from pathlib import Path # Run the training script placed in the same directory as app.py os.system("python train.py") # The training script will train and persist a linear regression # model with the filename 'model.joblib' # Load the freshly trained model from disk insurance_charge_predictor = joblib.load('model.joblib') # Prepare the logging functionality log_file = Path("logs/") / f"data_{uuid.uuid4()}.json" log_folder = log_file.parent scheduler = CommitScheduler( repo_id="anirudhabokil/insurance-charge-mlops-logs", # provide a name "insurance-charge-mlops-logs" for the repo_id repo_type="dataset", folder_path=log_folder, path_in_repo="data", every=2 ) # Define the predict function which will take features, convert to dataframe and make predictions using the saved model # the functions runs when 'Submit' is clicked or when a API request is made # Set up UI components for input and output age = gr.Number(label="Age") bmi = gr.Number(label="BMI") children = gr.Number(label="Children") sex = gr.Dropdown(['male','female'], label="Sex") smoker = gr.Dropdown(['yes','no'], label="Smoker") region = gr.Dropdown(['southwest','southeast','northwest','northeast'], label="Region") model_output = gr.Label(label="Insurance Charge") def predict_insurance_charge(age, bmi, children, sex, smoker, region): sample = { 'age': age, 'bmi': bmi, 'children': children, 'sex': sex, 'smoker': smoker, 'region': region } df = pd.DataFrame([sample]) print(sample) prediction = insurance_charge_predictor.predict(df).tolist() #print(prediction) # While the prediction is made, log both the inputs and outputs to a log file # While writing to the log file, ensure that the commit scheduler is locked to avoid parallel # access with scheduler.lock: with log_file.open("a") as f: f.write(json.dumps( { 'age': age, 'bmi': bmi, 'children': children, 'sex': sex, 'smoker': smoker, 'region': region, 'prediction': prediction[0] } )) f.write("\n") return prediction[0] # Create the gradio interface, make title "HealthyLife Insurance Charge Prediction" demo = gr.Interface(fn=predict_insurance_charge, inputs=[age, bmi, children, sex, smoker, region], outputs=model_output, title="HealthyLife Insurance Charge Prediction", description="This API allows you to predict insurance charge", flagging_mode="auto", concurrency_limit=8) # Launch with a load balancer demo.queue() demo.launch(share=True, debug=True)