|
|
|
import joblib |
|
from sklearn.datasets import fetch_openml |
|
from sklearn.preprocessing import StandardScaler, OneHotEncoder |
|
from sklearn.compose import make_column_transformer |
|
from sklearn.pipeline import make_pipeline |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.linear_model import LinearRegression |
|
from sklearn.metrics import root_mean_squared_error, r2_score, mean_squared_error |
|
import numpy as np |
|
import pandas as pd |
|
|
|
df_original = pd.read_csv("hf://datasets/anirudhabokil/insurance_data/insurance_data.csv") |
|
|
|
target = 'charges' |
|
|
|
df = df_original.drop(columns=['index']) |
|
numerical_features = ['age', 'bmi', 'children'] |
|
categorical_features = ['sex', 'smoker', 'region'] |
|
|
|
X = df[numerical_features + categorical_features] |
|
y = df[target] |
|
print('Splitting data') |
|
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.2, random_state=42) |
|
preprocessor = make_column_transformer( |
|
(StandardScaler(), numerical_features), |
|
(OneHotEncoder(), categorical_features) |
|
) |
|
model_logistic_regression = LinearRegression(n_jobs=-1) |
|
print('Estimating model pipelline') |
|
model_pipeline = make_pipeline(preprocessor, model_logistic_regression) |
|
model_pipeline.fit(Xtrain, ytrain) |
|
prediction = model_pipeline.predict(Xtest) |
|
|
|
print('Logging metrics') |
|
print(f"R-squared: {r2_score(ytest, prediction)}") |
|
print(f"RMSE: {root_mean_squared_error(ytest, prediction)}") |
|
print("Serializing model") |
|
saved_mode_path = 'model.joblib' |
|
joblib.dump(model_pipeline, 'model.joblib') |
|
|