from fastai.vision.all import * import gradio as gr learn = load_learner('model_v4_98_percent_final.pkl') categories = ('lotad', 'quagsire', 'slowpoke', 'snorlax') def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) image = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.Label() examples = ['lotad.jpg', 'quagsire.jpg', 'slowpoke.jpg', 'snorlax.jpg'] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch()