from keras.models import load_model import numpy as np labels = ['Chalky Soil', 'Mary Soil', 'Sand', 'Slit SOil', 'Alluvial Soil', 'Black Soil', 'Clay Soil', 'Red Soil'] MODEL_PATH = r"DenseNet121v2_95.h5" def load_CNN_model(): model = load_model(MODEL_PATH) print("model loaded") return model def classify_image(img): model = load_CNN_model() prediction = model.predict(img) predicted_class = np.argmax(prediction) predicted_label = labels[predicted_class] accuracy = prediction[0][predicted_class] return predicted_label, accuracy