import gradio as gr import numpy as np import cv2 from model import classify_image def main(img): img = cv2.resize(img, (224,224)) img = img/255.0 img = np.expand_dims(img, axis=0) label, accuracy = classify_image(img) print(label) out = {label: accuracy} return out demo = gr.Interface(fn=main, inputs=gr.Image(), outputs=gr.Label(num_top_classes=1), allow_flagging='never') if __name__ == "__main__": demo.launch(share=True)