import numpy as np import gradio as gr import torch from torch import nn from transformers import SegformerForSemanticSegmentation, SegformerFeatureExtractor #extractor = AutoFeatureExtractor.from_pretrained("andresgtn/segformer-b0-finetuned-ade-64-64-finetuned-semantic-sidewalk") extractor = SegformerFeatureExtractor() model = SegformerForSemanticSegmentation.from_pretrained("andresgtn/segformer-b0-finetuned-ade-64-64-finetuned-semantic-sidewalk") def rescale_output_image(logits, image): upsampled_logits = nn.functional.interpolate( logits, size=image.shape[::-1][1:][::-1], # (height, width) mode='bilinear', align_corners=False ) pred_seg = upsampled_logits.argmax(dim=1)[0] return pred_seg # classify function def classify(im): inputs = extractor(images=im, return_tensors="pt")#.to("cuda") outputs = model(**inputs) logits = outputs.logits #classes = logits[0].detach().cpu().numpy().argmax(axis=0) #classes = rescale_output_image(logits, im).detach().cpu().numpy() classes = rescale_output_image(logits, im).detach().numpy() colors = np.array([[128,0,0], [128,128,0], [0, 0, 128], [128,0,128], [0, 0, 0]]) return colors[classes] # define gradio interface interface = gr.Interface(classify, gr.Image(), 'image')# FILL HERE interface.launch(debug=True)