# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Adapted from https://github.com/huggingface/diffusers/blob/64bf5d33b7ef1b1deac256bed7bd99b55020c4e0/src/diffusers/models/attention.py from __future__ import annotations from copy import deepcopy from typing import Any, Dict, List, Literal, Optional, Callable, Tuple import logging from einops import rearrange import torch import torch.nn.functional as F from torch import nn from diffusers.models.embeddings import CombinedTimestepLabelEmbeddings from diffusers.utils.torch_utils import maybe_allow_in_graph from diffusers.models.attention_processor import Attention as DiffusersAttention from diffusers.models.attention import ( BasicTransformerBlock as DiffusersBasicTransformerBlock, AdaLayerNormZero, AdaLayerNorm, FeedForward, ) from diffusers.models.attention_processor import AttnProcessor from .attention_processor import IPAttention, BaseIPAttnProcessor logger = logging.getLogger(__name__) def not_use_xformers_anyway( use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None, ): return None @maybe_allow_in_graph class BasicTransformerBlock(DiffusersBasicTransformerBlock): print_idx = 0 def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout=0, cross_attention_dim: int | None = None, activation_fn: str = "geglu", num_embeds_ada_norm: int | None = None, attention_bias: bool = False, only_cross_attention: bool = False, double_self_attention: bool = False, upcast_attention: bool = False, norm_elementwise_affine: bool = True, norm_type: str = "layer_norm", final_dropout: bool = False, attention_type: str = "default", allow_xformers: bool = True, cross_attn_temporal_cond: bool = False, image_scale: float = 1.0, processor: AttnProcessor | None = None, ip_adapter_cross_attn: bool = False, need_t2i_facein: bool = False, need_t2i_ip_adapter_face: bool = False, ): if not only_cross_attention and double_self_attention: cross_attention_dim = None super().__init__( dim, num_attention_heads, attention_head_dim, dropout, cross_attention_dim, activation_fn, num_embeds_ada_norm, attention_bias, only_cross_attention, double_self_attention, upcast_attention, norm_elementwise_affine, norm_type, final_dropout, attention_type, ) self.attn1 = IPAttention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=cross_attention_dim if only_cross_attention else None, upcast_attention=upcast_attention, cross_attn_temporal_cond=cross_attn_temporal_cond, image_scale=image_scale, ip_adapter_dim=cross_attention_dim if only_cross_attention else attention_head_dim, facein_dim=cross_attention_dim if only_cross_attention else attention_head_dim, processor=processor, ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. self.norm2 = ( AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) ) self.attn2 = IPAttention( query_dim=dim, cross_attention_dim=cross_attention_dim if not double_self_attention else None, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, cross_attn_temporal_cond=ip_adapter_cross_attn, need_t2i_facein=need_t2i_facein, need_t2i_ip_adapter_face=need_t2i_ip_adapter_face, image_scale=image_scale, ip_adapter_dim=cross_attention_dim if not double_self_attention else attention_head_dim, facein_dim=cross_attention_dim if not double_self_attention else attention_head_dim, ip_adapter_face_dim=cross_attention_dim if not double_self_attention else attention_head_dim, processor=processor, ) # is self-attn if encoder_hidden_states is none else: self.norm2 = None self.attn2 = None if self.attn1 is not None: if not allow_xformers: self.attn1.set_use_memory_efficient_attention_xformers = ( not_use_xformers_anyway ) if self.attn2 is not None: if not allow_xformers: self.attn2.set_use_memory_efficient_attention_xformers = ( not_use_xformers_anyway ) self.double_self_attention = double_self_attention self.only_cross_attention = only_cross_attention self.cross_attn_temporal_cond = cross_attn_temporal_cond self.image_scale = image_scale def forward( self, hidden_states: torch.FloatTensor, attention_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, timestep: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, class_labels: Optional[torch.LongTensor] = None, self_attn_block_embs: Optional[Tuple[List[torch.Tensor], List[None]]] = None, self_attn_block_embs_mode: Literal["read", "write"] = "write", ) -> torch.FloatTensor: # Notice that normalization is always applied before the real computation in the following blocks. # 0. Self-Attention if self.use_ada_layer_norm: norm_hidden_states = self.norm1(hidden_states, timestep) elif self.use_ada_layer_norm_zero: norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype ) else: norm_hidden_states = self.norm1(hidden_states) # 1. Retrieve lora scale. lora_scale = ( cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 ) if cross_attention_kwargs is None: cross_attention_kwargs = {} # 特殊AttnProcessor需要的入参 在 cross_attention_kwargs 准备 # special AttnProcessor needs input parameters in cross_attention_kwargs original_cross_attention_kwargs = { k: v for k, v in cross_attention_kwargs.items() if k not in [ "num_frames", "sample_index", "vision_conditon_frames_sample_index", "vision_cond", "vision_clip_emb", "ip_adapter_scale", "face_emb", "facein_scale", "ip_adapter_face_emb", "ip_adapter_face_scale", "do_classifier_free_guidance", ] } if "do_classifier_free_guidance" in cross_attention_kwargs: do_classifier_free_guidance = cross_attention_kwargs[ "do_classifier_free_guidance" ] else: do_classifier_free_guidance = False # 2. Prepare GLIGEN inputs original_cross_attention_kwargs = ( original_cross_attention_kwargs.copy() if original_cross_attention_kwargs is not None else {} ) gligen_kwargs = original_cross_attention_kwargs.pop("gligen", None) # 返回self_attn的结果,适用于referencenet的输出给其他Unet来使用 # return the result of self_attn, which is suitable for the output of referencenet to be used by other Unet if ( self_attn_block_embs is not None and self_attn_block_embs_mode.lower() == "write" ): # self_attn_block_emb = self.attn1.head_to_batch_dim(attn_output, out_dim=4) self_attn_block_emb = norm_hidden_states if not hasattr(self, "spatial_self_attn_idx"): raise ValueError( "must call unet.insert_spatial_self_attn_idx to generate spatial attn index" ) basick_transformer_idx = self.spatial_self_attn_idx if self.print_idx == 0: logger.debug( f"self_attn_block_embs, self_attn_block_embs_mode={self_attn_block_embs_mode}, " f"basick_transformer_idx={basick_transformer_idx}, length={len(self_attn_block_embs)}, shape={self_attn_block_emb.shape}, " # f"attn1 processor, {type(self.attn1.processor)}" ) self_attn_block_embs[basick_transformer_idx] = self_attn_block_emb # read and put referencenet emb into cross_attention_kwargs, which would be fused into attn_processor if ( self_attn_block_embs is not None and self_attn_block_embs_mode.lower() == "read" ): basick_transformer_idx = self.spatial_self_attn_idx if not hasattr(self, "spatial_self_attn_idx"): raise ValueError( "must call unet.insert_spatial_self_attn_idx to generate spatial attn index" ) if self.print_idx == 0: logger.debug( f"refer_self_attn_emb: , self_attn_block_embs_mode={self_attn_block_embs_mode}, " f"length={len(self_attn_block_embs)}, idx={basick_transformer_idx}, " # f"attn1 processor, {type(self.attn1.processor)}, " ) ref_emb = self_attn_block_embs[basick_transformer_idx] cross_attention_kwargs["refer_emb"] = ref_emb if self.print_idx == 0: logger.debug( f"unet attention read, {self.spatial_self_attn_idx}", ) # ------------------------------warning----------------------- # 这两行由于使用了ref_emb会导致和checkpoint_train相关的训练错误,具体未知,留在这里作为警示 # bellow annoated code will cause training error, keep it here as a warning # logger.debug(f"ref_emb shape,{ref_emb.shape}, {ref_emb.mean()}") # logger.debug( # f"norm_hidden_states shape, {norm_hidden_states.shape}, {norm_hidden_states.mean()}", # ) if self.attn1 is None: self.print_idx += 1 return norm_hidden_states attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **( cross_attention_kwargs if isinstance(self.attn1.processor, BaseIPAttnProcessor) else original_cross_attention_kwargs ), ) if self.use_ada_layer_norm_zero: attn_output = gate_msa.unsqueeze(1) * attn_output hidden_states = attn_output + hidden_states # 推断的时候,对于uncondition_部分独立生成,排除掉 refer_emb, # 首帧等的影响,避免生成参考了refer_emb、首帧等,又在uncond上去除了 # in inference stage, eliminate influence of refer_emb, vis_cond on unconditionpart # to avoid use that, and then eliminate in pipeline # refer to moore-animate anyone # do_classifier_free_guidance = False if self.print_idx == 0: logger.debug(f"do_classifier_free_guidance={do_classifier_free_guidance},") if do_classifier_free_guidance: hidden_states_c = attn_output.clone() _uc_mask = ( torch.Tensor( [1] * (norm_hidden_states.shape[0] // 2) + [0] * (norm_hidden_states.shape[0] // 2) ) .to(norm_hidden_states.device) .bool() ) hidden_states_c[_uc_mask] = self.attn1( norm_hidden_states[_uc_mask], encoder_hidden_states=norm_hidden_states[_uc_mask], attention_mask=attention_mask, ) attn_output = hidden_states_c.clone() if "refer_emb" in cross_attention_kwargs: del cross_attention_kwargs["refer_emb"] # 2.5 GLIGEN Control if gligen_kwargs is not None: hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) # 2.5 ends # 3. Cross-Attention if self.attn2 is not None: norm_hidden_states = ( self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) ) # 特殊AttnProcessor需要的入参 在 cross_attention_kwargs 准备 # special AttnProcessor needs input parameters in cross_attention_kwargs attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if not self.double_self_attention else None, attention_mask=encoder_attention_mask, **( original_cross_attention_kwargs if not isinstance(self.attn2.processor, BaseIPAttnProcessor) else cross_attention_kwargs ), ) if self.print_idx == 0: logger.debug( f"encoder_hidden_states, type={type(encoder_hidden_states)}" ) if encoder_hidden_states is not None: logger.debug( f"encoder_hidden_states, ={encoder_hidden_states.shape}" ) # encoder_hidden_states_tmp = ( # encoder_hidden_states # if not self.double_self_attention # else norm_hidden_states # ) # if do_classifier_free_guidance: # hidden_states_c = attn_output.clone() # _uc_mask = ( # torch.Tensor( # [1] * (norm_hidden_states.shape[0] // 2) # + [0] * (norm_hidden_states.shape[0] // 2) # ) # .to(norm_hidden_states.device) # .bool() # ) # hidden_states_c[_uc_mask] = self.attn2( # norm_hidden_states[_uc_mask], # encoder_hidden_states=encoder_hidden_states_tmp[_uc_mask], # attention_mask=attention_mask, # ) # attn_output = hidden_states_c.clone() hidden_states = attn_output + hidden_states # 4. Feed-forward if self.norm3 is not None and self.ff is not None: norm_hidden_states = self.norm3(hidden_states) if self.use_ada_layer_norm_zero: norm_hidden_states = ( norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] ) if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." ) num_chunks = ( norm_hidden_states.shape[self._chunk_dim] // self._chunk_size ) ff_output = torch.cat( [ self.ff(hid_slice, scale=lora_scale) for hid_slice in norm_hidden_states.chunk( num_chunks, dim=self._chunk_dim ) ], dim=self._chunk_dim, ) else: ff_output = self.ff(norm_hidden_states, scale=lora_scale) if self.use_ada_layer_norm_zero: ff_output = gate_mlp.unsqueeze(1) * ff_output hidden_states = ff_output + hidden_states self.print_idx += 1 return hidden_states