import shutil from haystack.document_stores import FAISSDocumentStore from haystack.nodes import EmbeddingRetriever from haystack.pipelines import ExtractiveQAPipeline from haystack.nodes import FARMReader import streamlit as st from config import (INDEX_DIR, RETRIEVER_MODEL, RETRIEVER_MODEL_FORMAT, READER_MODEL, READER_CONFIG_THRESHOLD, QUESTIONS_PATH) # cached to make index and models load only at start @st.cache(hash_funcs={"builtins.SwigPyObject": lambda _: None}, allow_output_mutation=True) def start_haystack(): """ load document store, retriever, reader and create pipeline """ shutil.copy(f'{INDEX_DIR}/faiss_document_store.db', '.') document_store = FAISSDocumentStore( faiss_index_path=f'{INDEX_DIR}/my_faiss_index.faiss', faiss_config_path=f'{INDEX_DIR}/my_faiss_index.json') print(f'Index size: {document_store.get_document_count()}') retriever = EmbeddingRetriever( document_store=document_store, embedding_model=RETRIEVER_MODEL, model_format=RETRIEVER_MODEL_FORMAT ) reader = FARMReader(model_name_or_path=READER_MODEL, use_gpu=False, confidence_threshold=READER_CONFIG_THRESHOLD) pipe = ExtractiveQAPipeline(reader, retriever) return pipe pipe = start_haystack() # the pipeline is not included as parameter of the following function, # because it is difficult to cache @st.cache(persist=True, allow_output_mutation=True) def query(question: str, retriever_top_k: int = 10, reader_top_k: int = 5): """Run query and get answers""" params = {"Retriever": {"top_k": retriever_top_k}, "Reader": {"top_k": reader_top_k}} results = pipe.run(question, params=params) return results @st.cache() def load_questions(): """Load selected questions from file""" with open(QUESTIONS_PATH) as fin: questions = [line.strip() for line in fin.readlines() if not line.startswith('#')] return questions