import os import time import streamlit as st import subprocess import sys import logging import pandas as pd from json import JSONDecodeError from pathlib import Path from markdown import markdown import random from typing import List, Dict, Any, Tuple from haystack.document_stores import ElasticsearchDocumentStore, FAISSDocumentStore from haystack.nodes import EmbeddingRetriever from haystack.pipelines import ExtractiveQAPipeline from haystack.preprocessor.preprocessor import PreProcessor from haystack.nodes import FARMReader, TransformersReader from haystack.pipelines import ExtractiveQAPipeline from annotated_text import annotation import shutil # FAISS index directory INDEX_DIR = 'data/index' # the following function is cached to make index and models load only at start @st.cache(hash_funcs={"builtins.SwigPyObject": lambda _: None}, allow_output_mutation=True) def start_haystack(): """ load document store, retriever, reader and create pipeline """ shutil.copy(f'{INDEX_DIR}/faiss_document_store.db','.') document_store = FAISSDocumentStore( faiss_index_path=f'{INDEX_DIR}/my_faiss_index.faiss', faiss_config_path=f'{INDEX_DIR}/my_faiss_index.json') print (f'Index size: {document_store.get_document_count()}') retriever = EmbeddingRetriever( document_store=document_store, embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1", model_format="sentence_transformers" ) reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=True) pipe = ExtractiveQAPipeline(reader, retriever) return pipe def set_state_if_absent(key, value): if key not in st.session_state: st.session_state[key] = value def get_backlink(result, ip) -> str: """ Build URL from metadata and Google VM IP (quick and dirty) """ meta = result['meta'] fpath = meta['filepath'].rpartition('/')[-1] fname = fpath.rpartition('.')[0] return f'http://{ip}:8000/data/final/ner_html/{fname}.html' def query(pipe, question): """Run query and get answers""" return (pipe.run(question, params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 5}}), None) def main(): # st.set_page_config(page_title='Who killed Laura Palmer?', # page_icon="https://static.wikia.nocookie.net/twinpeaks/images/4/4a/Site-favicon.ico/revision/latest?cb=20210710003705") pipe=start_haystack() # my_ip=subprocess.run(['curl', 'ifconfig.me'], stdout=subprocess.PIPE).stdout.decode('utf-8') # Persistent state set_state_if_absent('question', "Where is Twin Peaks?") set_state_if_absent('answer', '') set_state_if_absent('results', None) set_state_if_absent('raw_json', None) set_state_if_absent('random_question_requested', False) # Small callback to reset the interface in case the text of the question changes def reset_results(*args): st.session_state.answer = None st.session_state.results = None st.session_state.raw_json = None # Title st.write("# Who killed Laura Palmer?") st.write("### The first Twin Peaks Question Answering system!") st.markdown("""
Ask any question on [Twin Peaks] (https://twinpeaks.fandom.com/wiki/Twin_Peaks) and see if the AI can find answer...! *Note: do not use keywords, but full-fledged questions.* """, unsafe_allow_html=True) # Sidebar st.sidebar.header("Who killed Laura Palmer?") st.sidebar.image("https://upload.wikimedia.org/wikipedia/it/3/39/Twin-peaks-1990.jpg") st.sidebar.markdown('

Twin Peaks Question Answering system

', unsafe_allow_html=True) st.sidebar.markdown(f""" """, unsafe_allow_html=True) # st.sidebar.image('https://static.wikia.nocookie.net/twinpeaks/images/e/ef/Laura_Palmer%2C_the_Queen_Of_Hearts.jpg', width=270) #use_column_width='always' song_i = random.randint(1,11) st.sidebar.audio(f'http://twinpeaks.narod.ru/Media/0{song_i}.mp3') # Search bar question = st.text_input("", value=st.session_state.question, max_chars=100, #on_change=reset_results ) col1, col2 = st.columns(2) col1.markdown("", unsafe_allow_html=True) col2.markdown("", unsafe_allow_html=True) # Run button run_pressed = col1.button("Run") run_query = (run_pressed or question != st.session_state.question) and not st.session_state.random_question_requested # Get results for query if run_query and question: reset_results() st.session_state.question = question with st.spinner( "🧠    Performing neural search on documents..." ): try: st.session_state.results, st.session_state.raw_json = query(pipe, question) except JSONDecodeError as je: st.error("👓    An error occurred reading the results. Is the document store working?") return except Exception as e: logging.exception(e) if "The server is busy processing requests" in str(e) or "503" in str(e): st.error("🧑‍🌾    All our workers are busy! Try again later.") else: st.error("🐞    An error occurred during the request.") return if st.session_state.results: st.write("## Results:") alert_irrelevance=True for count, result in enumerate(st.session_state.results['answers']): result=result.to_dict() if result["answer"]: if alert_irrelevance and result['score']<=0.40: alert_irrelevance = False st.write("

Attention, the following answers have low relevance:

", unsafe_allow_html=True) answer, context = result["answer"], result["context"] #authors, title = result["meta"]["authors"], result["meta"]["title"] start_idx = context.find(answer) end_idx = start_idx + len(answer) #url = get_backlink(result, my_ip) # Hack due to this bug: https://github.com/streamlit/streamlit/issues/3190 st.write(markdown("- ..."+context[:start_idx] + str(annotation(answer, "ANSWER", "#8ef")) + context[end_idx:]+"..."), unsafe_allow_html=True) #st.write(markdown(f"{title} - {authors}"), unsafe_allow_html=True) #st.write(markdown(f"**Relevance:** {result['score']:.2f}"), unsafe_allow_html=True) main()