File size: 6,982 Bytes
bae498f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
""""""""""""""""""""""""""""""""" 
This file is for modifying.
Do not run this file.

For running: RegressorTest.py
For modifying: Settings.py
"""""""""""""""""""""""""""""""""
import numpy as np
import tensorflow as tf

"""""""""""""""""""""""""""
Settings that can change
"""""""""""""""""""""""""""
# Determines complexity of tree
n_tree_layers = 3

# Allowable operators for tree nodes
# function_set = ['id', 'mul', 'sqrt', 'sin', 'div', 'log']
function_set = ["id", "mul", "sin", "sqrt"]

num_features = 1
num_dims_per_feature = 1
n_dims_in_output = 1

train_scope = [0, 5]
test_scope = [y * 2 for y in train_scope]

num_train_repeat_processes = 5
num_train_steps_in_repeat_mode = 8000

"""""""""""""""""""""""""""
Display and log settings
"""""""""""""""""""""""""""

show_output = False
keep_logs = False
output_freq = 49000
plot_frequency = 500000
save_all_formulas = False

max_formula_output_length = 400

"""""""""""""""""""""""""""
Tree settings
"""""""""""""""""""""""""""
use_both_for_unary = True
non_const = False
use_leaf_sm = False


"""""""""""""""""""""""""""
Domain parameters
"""""""""""""""""""""""""""

fpe_example = 0

max_x = np.pi

train_scope2 = [0, 5]
test_scope2 = test_scope.copy()  # [0, 5]

avoid_zero = False
# if fpe_example == 4:
#     avoid_zero = True


"""""""""""""""""""""""""""
Define the ODE here
"""""""""""""""""""""""""""
# options: mode = "sr", "de", "lr"
mode = "de"

# This is the "g" function that defines the ODE problem.
def implicit_function(full_x, y, y_p, y_pp):
    # Implicit function is 0 if we are doing symbolic regression
    if mode == "sr":
        return y * 0.0

    y_p1 = y_p[0]
    y_p2 = y_p[1]
    y_p3 = y_p[2]

    y_pp1 = y_pp[0]
    y_pp2 = y_pp[1]
    y_pp12 = y_pp[2]

    x = tf.reshape(full_x[:, 0, 0], [-1, 1, 1])
    t = tf.reshape(full_x[:, 0, -1], [-1, 1, 1])
    if num_features > 1:
        w = tf.reshape(full_x[:, 0, 1], [-1, 1, 1])

    ret_val = None

    """ Lane-Emden Equation """
    # emden_m = 0
    # ret_val = y_pp1 + 2.0 * tf.math.divide_no_nan(y_p1, x)
    # ret_val += y ** emden_m

    """ Bell curve integral """
    # ret_val = tf.math.exp(-1.0 * tf.square(x)) - y_p1

    """ One dimensional wave equation """
    # c = 1.0
    # ret_val = y_pp2 - c**2 * y_pp1

    """ One dimensional heat equation """
    # c = 1.0
    # ret_val = y_p2 - c**2 * y_pp1 - tf.math.cos(x)

    """ Inhomogeneous wave equation """
    # ret_val = y_pp1 - y_pp2 - 2

    """ Two dimensional Laplace equation """
    # ret_val = y_pp2 + y_pp1

    ret_val = y_p1 - 2 * x



    """ FP Eqn """
    if fpe_example == 1:
        # Example 1
        a = -1.0
        a_p = 0.0
        b = 1.0
        b_p = 0.0
        b_pp = 0.0
    elif fpe_example == 2:
        # Example 2
        a = x
        a_p = 1.0
        b = tf.math.square(x) / 2
        b_p = x
        b_pp = 1.0
    elif fpe_example == 3:
        # Example 3
        a = -1.0 - x
        a_p = -1.0
        b = tf.multiply(x ** 2, tf.math.exp(t))
        b_p = 2 * x * tf.math.exp(t)
        b_pp = 2 * tf.math.exp(t)
    elif fpe_example == 4:
        # Example 4
        a = 4.0 * tf.math.divide_no_nan(y, x) - x / 3.0
        a_p = 4.0 * (tf.math.divide_no_nan(y_p1, x) - tf.math.divide_no_nan(y, x ** 2)) - 1.0 / 3
        b = y
        b_p = y_p1
        b_pp = y_pp1
    elif fpe_example == 6:
        # Example 5
        a = 0.0
        a_p = 0.0
        b = 0.5
        b_p = 0.0
        b_pp = 0.0

    if fpe_example > 0:
        t1 = tf.multiply(y, b_pp - a_p)
        t2 = tf.multiply(y_p1, 2 * b_p - a)
        t3 = tf.multiply(y_pp1, b)
        # print("a: {}".format(a.shape))
        # print("a_p: {}".format(a_p.shape))
        # print("b: {}".format(a.shape))
        # print("b_p: {}".format(b_p.shape))
        # print("b_pp: {}".format(b_pp.shape))
        # print("t1: {}".format(t1.shape))
        # print("t2: {}".format(t2.shape))
        # print("t3: {}".format(t3.shape))

        ret_val = y_p2 - (t1 + t2 + t3)

    if fpe_example == 3:
        ret_val = y_p2 - ((x + 1) * y_p1 + x ** 2 * tf.math.exp(t) * y_pp1)

    if fpe_example == 4:
        t1 = y * (y_pp1 * x ** 2 - 4 * y_p1 * x + 4 * y + x * x / 3.0)
        t2 = y_p1 * (2 * x * y_p1 - 4 * x * y + x * x * x / 3.0)
        t3 = x ** 2 * y_pp1 * y
        ret_val = y_p2 * x * x - (t1 + t2 + t3)

    if fpe_example == 5:
        ret_val = y_p3 - (-2 * y + 3 * x * y_p1 - w * y_p2 + x ** 2 * y_pp1 + w ** 2 * y_pp2 + 2 * y_pp12)

    return ret_val

"""""""""""""""""""""""""""
Initial values
"""""""""""""""""""""""""""
# initialize_ops are given in bottom-up order.
initialize_ops = np.zeros([2 ** n_tree_layers - 1])
# initialize_ops = ["mul", "mul", "id"]
# if fpe_example in [1, 2, 3, 5]:
#     initialize_ops = ["id", "exp", "mul"]
# elif fpe_example in [4]:
#     initialize_ops = ["mul", "exp", "mul"]


# initialize_ops = ["exp", "sin", "mul"]
#
min_x = 0
max_t = 5
min_t = 0
n_bc_points = 5

# Initial values for (x, y)

fixed_x = []
fixed_y = []
# for i in range(n_bc_points):
#     t_i = i * (max_t - min_t)/n_bc_points + min_t
#     fixed_x.append([0, t_i])
#     # fixed_y.append(0)
#     fixed_y.append(1 - np.exp(-1 * t_i))
#     fixed_x.append([np.pi, t_i])
#     fixed_y.append(np.exp(-1 * t_i) - 1)
# fixed_y.append(0)



# Initial values for (x, y')
fixed_x_p1 = []
fixed_y_p1 = []
fixed_x_p2 = []
fixed_y_p2 = []

if mode == "de":
    if fpe_example != 5:
        for i in range(n_bc_points):
            x_i = i * (max_x - min_x) / (n_bc_points - 1) + min_x
            fixed_x.append([x_i, 0])
            if fpe_example in [1, 2, 5]:
                fixed_y.append(x_i)
            elif fpe_example == 3:
                fixed_y.append(x_i + 1)
            elif fpe_example == 4:
                fixed_y.append(x_i ** 2)
            # fixed_y.append(0)
            # fixed_y.append(x_i + np.cos(x_i))
            # fixed_x_p2.append([x_i, 0])
            # fixed_y_p2.append(np.sin(x_i))

    if fpe_example == 5:
        for i in range(n_bc_points):
            x_i = i * (max_x - min_x) / (n_bc_points - 1) + min_x
            for j in range(n_bc_points):
                w_j = j * (max_x - min_x) / (n_bc_points - 1) + min_x

                fixed_x.append([x_i, w_j, 0])
                fixed_y.append(x_i)

# print("IVP (x, y):\n{}".format([(fixed_x[i], fixed_y[i]) for i in range(len(fixed_x))]))
# print("IVP (x, y_p1):\n{}".format([(fixed_x_p1[i], fixed_y_p1[i]) for i in range(len(fixed_x_p1))]))
# print("IVP (x, y_p2):\n{}".format([(fixed_x_p2[i], fixed_y_p2[i]) for i in range(len(fixed_x_p2))]))

# Weight to give IVP error
ivp_lambda = 10


"""""""""""""""""""""""""""
Training hyperparameters
"""""""""""""""""""""""""""
quick_train_fraction = 0.7

# Probably don't need to change any of the ones below
max_training_batch_size = 1000
t1_fraction = 5/20
t2_fraction = 15 / 20

train_N = 5000
test_N = 1000

eps = 1e-4
big_eps = 1e-3
d_eps = 2.0e-2
learn_rate = 0.001
w_matrix_stddev = 0.1
init_weight_value = 5