import numpy as np #to help us use numerical functions import pandas as pd #to help us use functions for dealing with dataframe import os #provides functions for creating and removing a directory import random import matplotlib.pyplot as plt from collections import defaultdict #data colector import surprise from surprise.reader import Reader from surprise import Dataset from surprise.model_selection import GridSearchCV from surprise.model_selection import cross_validate from surprise import SVD from surprise import NMF from sklearn.feature_extraction.text import TfidfVectorizer #for TF-IDF from sklearn.metrics.pairwise import linear_kernel W_belongs_to_collection = 0.16 W_genres = 0.10 W_original_language = 0.01 W_title = 0.11 W_overview = 0.08 W_production_countries = 0.01 W_production_companies = 0.02 W_tagline = 0.10 W_keywords = 0.10 W_Director = 0.03 W_Writer = 0.02 W_Cast = 0.02 W_Top_Cast = 0.03 W_budget_categorized = 0.01 W_length = 0.02 W_average_vote_categorized = 0.08 W_count_vote_categorized = 0.07 W_era = 0.03 ################################################################## tfidf = TfidfVectorizer(stop_words='english') #defining tfidf model which removes additional words such as 'the', 'or', 'in' movies_filename = pd.read_csv('movies_metadata.csv', low_memory = False) ratings_filename = pd.read_csv('ratings_small.csv', low_memory = False) df_popular_popularity = pd.read_csv('df_popular_popularity.csv', low_memory = False) df_popular_WR_Q = pd.read_csv('df_popular_WR_Q.csv', low_memory = False) df_cbf_Q = pd.read_csv('df_cbf_Q.csv', low_memory = False) df_cbf_Q['belongs_to_collection'] = df_cbf_Q['belongs_to_collection'].fillna("") df_cbf_Q['overview'] = df_cbf_Q['overview'].fillna("") df_cbf_Q['spoken_languages'] = df_cbf_Q['spoken_languages'].fillna("") df_cbf_Q['tagline'] = df_cbf_Q['tagline'].fillna("") df_cbf_Q['Director'] = df_cbf_Q['Director'].fillna("") df_cbf_Q['Writer'] = df_cbf_Q['Writer'].fillna("") df_cbf1 = df_cbf_Q df_cbf2 = df_cbf_Q ratings = ratings_filename movie_md = movies_filename ###################################################################### # movie dataframe with votes more than 100 movie_md = movie_md[movie_md['vote_count']>100] # removing user with below 10 votes ratings = ratings.groupby("userId").filter(lambda x: x['userId'].count() >= 10) # IDs of movies with count more than 100 movie_ids = [int(x) for x in movie_md['id'].values] # Select ratings of movies with more than 100 counts ratings = ratings[ratings['movieId'].isin(movie_ids)] #holding only 1 millions of ratings ### in case of not using ratings_small #ratings = ratings[:1000000] # Reset Index ratings.reset_index(inplace=True, drop=True) ############################################################################################# df_cbf_tfidf_belongs_to_collection = tfidf.fit_transform(df_cbf1['belongs_to_collection']) cosine_sim_belongs_to_collection = linear_kernel(df_cbf_tfidf_belongs_to_collection, df_cbf_tfidf_belongs_to_collection) df_cbf_tfidf_genres = tfidf.fit_transform(df_cbf1['genres']) cosine_sim_genres = linear_kernel(df_cbf_tfidf_genres, df_cbf_tfidf_genres) df_cbf_tfidf_original_language = tfidf.fit_transform(df_cbf1['original_language']) cosine_sim_original_language = linear_kernel(df_cbf_tfidf_original_language, df_cbf_tfidf_original_language) df_cbf_tfidf_title = tfidf.fit_transform(df_cbf1['title']) cosine_sim_title = linear_kernel(df_cbf_tfidf_title, df_cbf_tfidf_title) df_cbf_tfidf_overview = tfidf.fit_transform(df_cbf1['overview']) cosine_sim_overview = linear_kernel(df_cbf_tfidf_overview, df_cbf_tfidf_overview) df_cbf_tfidf_pruduction_countries = tfidf.fit_transform(df_cbf1['production_countries']) cosine_sim_pruduction_countries = linear_kernel(df_cbf_tfidf_pruduction_countries, df_cbf_tfidf_pruduction_countries) df_cbf_tfidf_pruduction_companies = tfidf.fit_transform(df_cbf1['production_companies']) cosine_sim_pruduction_companies = linear_kernel(df_cbf_tfidf_pruduction_companies, df_cbf_tfidf_pruduction_companies) df_cbf_tfidf_tagline = tfidf.fit_transform(df_cbf1['tagline']) cosine_sim_tagline = linear_kernel(df_cbf_tfidf_tagline, df_cbf_tfidf_tagline) df_cbf_tfidf_keywords = tfidf.fit_transform(df_cbf1['keywords']) cosine_sim_keywords = linear_kernel(df_cbf_tfidf_keywords, df_cbf_tfidf_keywords) df_cbf_tfidf_Director = tfidf.fit_transform(df_cbf1['Director']) cosine_sim_Director = linear_kernel(df_cbf_tfidf_Director, df_cbf_tfidf_Director) df_cbf_tfidf_Writer = tfidf.fit_transform(df_cbf1['Writer']) cosine_sim_Writer = linear_kernel(df_cbf_tfidf_Writer, df_cbf_tfidf_Writer) df_cbf_tfidf_Cast = tfidf.fit_transform(df_cbf1['Cast']) cosine_sim_Cast = linear_kernel(df_cbf_tfidf_Cast, df_cbf_tfidf_Cast) df_cbf_tfidf_Top_Cast = tfidf.fit_transform(df_cbf1['Top Cast']) cosine_sim_Top_Cast = linear_kernel(df_cbf_tfidf_Top_Cast, df_cbf_tfidf_Top_Cast) df_cbf_tfidf_budget_categorized = tfidf.fit_transform(df_cbf1['budget_categorized']) cosine_sim_budget_categorized = linear_kernel(df_cbf_tfidf_budget_categorized, df_cbf_tfidf_budget_categorized) df_cbf_tfidf_Length = tfidf.fit_transform(df_cbf1['Length']) cosine_sim_Length = linear_kernel(df_cbf_tfidf_Length, df_cbf_tfidf_Length) df_cbf_tfidf_average_vote_categorized = tfidf.fit_transform(df_cbf1['average_vote_categorized']) cosine_sim_average_vote_categorized = linear_kernel(df_cbf_tfidf_average_vote_categorized, df_cbf_tfidf_average_vote_categorized) df_cbf_tfidf_count_vote_categorized = tfidf.fit_transform(df_cbf1['count_vote_categorized']) cosine_sim_count_vote_categorized = linear_kernel(df_cbf_tfidf_count_vote_categorized, df_cbf_tfidf_count_vote_categorized) df_cbf_tfidf_era = tfidf.fit_transform(df_cbf1['era']) cosine_sim_era = linear_kernel(df_cbf_tfidf_era, df_cbf_tfidf_era) #################################################################################################################################### cosin_sim_final = np.multiply(cosine_sim_belongs_to_collection, W_belongs_to_collection) + np.multiply(cosine_sim_genres, W_genres) + np.multiply(cosine_sim_original_language, W_original_language) + np.multiply(cosine_sim_title, W_title) + np.multiply(cosine_sim_overview, W_overview) + np.multiply(cosine_sim_pruduction_countries, W_production_countries) + np.multiply(cosine_sim_pruduction_companies, W_production_companies) + np.multiply(cosine_sim_tagline, W_tagline) + np.multiply(cosine_sim_keywords, W_keywords) + np.multiply(cosine_sim_Director, W_Director) + np.multiply(cosine_sim_Writer, W_Writer) + np.multiply(cosine_sim_Cast, W_Cast) + np.multiply(cosine_sim_Top_Cast, W_Top_Cast) + np.multiply(cosine_sim_budget_categorized, W_budget_categorized) + np.multiply(cosine_sim_Length, W_length) + np.multiply(cosine_sim_average_vote_categorized, W_average_vote_categorized) + np.multiply(cosine_sim_count_vote_categorized, W_count_vote_categorized) + np.multiply(cosine_sim_era, W_era) df_cbf2_indices = pd.Series(df_cbf2.index, index=df_cbf2['title']) ################################################################# #recommend based on popularity def final_recommender_hot_picks_now(Watched_list): recommended_list = [] for i in range(10): recommended_list.append(df_popular_popularity.loc[i, 'title']) return recommended_list #recommend based on weighted ratings def final_recommender_hot_picks_of_all_time(Watched_list): recommended_list = [] for i in range(10): recommended_list.append(df_popular_WR_Q.loc[i, 'title']) return recommended_list #recommend based on content based def final_recommender_for_you(Watched_list): recommended_list = [] if len(Watched_list) < 3: for i in range(10): recommended_list.append(df_popular_WR_Q.loc[i, 'title']) else: Watched_movies_list = Watched_list[-3:] recently_watched = Watched_movies_list[-3:] for i in range(len(recently_watched)): y = df_cbf2_indices[recently_watched[i]] z = list(enumerate(cosin_sim_final[y])) z = sorted(z, key=lambda x: x[1], reverse=True) z = z[1:16] k = [i[0] for i in z] for j in k: recommended_list.append(df_cbf2.loc[j, 'title']) for i in range(len(Watched_movies_list)): recommended_list.append(Watched_movies_list[i]) recommended_list = list(set(recommended_list)) for i in Watched_list: recommended_list.remove(i) random.shuffle(recommended_list) recommended_list = recommended_list[:15] return recommended_list def recommender_svd(watch_list): df1 = ratings for i in range(len(watch_list)): df1 = df1.append({'userId' : int(ratings.loc[26123,'userId'])+1, 'movieId' : int(movie_md.loc[movie_md['title'] == watch_list[i], 'id']), 'rating' : 5, 'timestamp' : 0}, ignore_index = True) # Initialize a surprise reader object reader = Reader(line_format='user item rating', sep=',', rating_scale=(0,5), skip_lines=1) # Load the data data = Dataset.load_from_df(ratings[['userId','movieId','rating']], reader=reader) # Build trainset object(perform this only when you are using whole dataset to train) trainset = data.build_full_trainset() # Initialize model svd = SVD() # cross-validate svd.fit(trainset) recommendations = [] user_movie_interactions_matrix = df1.pivot(index='userId', columns='movieId', values='rating') non_interacted_movies = user_movie_interactions_matrix.loc[int(ratings.loc[26123,'userId'])+1][user_movie_interactions_matrix.loc[int(ratings.loc[26123,'userId'])+1].isnull()].index.tolist() for item_id in non_interacted_movies: est = svd.predict(int(ratings.loc[26123,'userId'])+1, item_id).est movie_name = movie_md[movie_md['id']==str(item_id)]['title'].values[0] recommendations.append((movie_name, est)) recommendations.sort(key=lambda x: x[1], reverse=True) recommendations = [x[0] for x in recommendations] return recommendations[:15] ####### #######################################################