Spaces:
Sleeping
Sleeping
File size: 8,250 Bytes
e476c2e 037c4ae e476c2e 037c4ae e476c2e 037c4ae e476c2e 037c4ae e476c2e 037c4ae e476c2e 037c4ae e476c2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from huggingface_hub import login
from threading import Thread
import PyPDF2
import pandas as pd
import torch
import time
# Check if 'peft' is installed
try:
from peft import PeftModel, PeftConfig
except ImportError:
raise ImportError(
"The 'peft' library is required but not installed. "
"Please install it using: `pip install peft`"
)
# Set page configuration
st.set_page_config(
page_title="WizNerd Insp",
page_icon="π",
layout="centered"
)
# Hardcoded Hugging Face token (replace with your actual token)
HF_TOKEN = "your_hugging_face_token_here"
# Model names
BASE_MODEL_NAME = "google-bert/bert-base-uncased"
MODEL_OPTIONS = {
"Full Fine-Tuned": "amiguel/instruct_BERT-base-uncased_model",
"LoRA Adapter": "amiguel/SmolLM2-360M-concise-reasoning-lora",
"QLoRA Adapter": "amiguel/SmolLM2-360M-concise-reasoning-qlora" # Hypothetical, adjust if needed
}
# Title with rocket emojis
st.title("π WizNerd Insp π")
# Configure Avatars
USER_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/9904d9a0d445ab0488cf7395cb863cce7621d897/USER_AVATAR.png"
BOT_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/991f4c6e4e1dc7a8e24876ca5aae5228bcdb4dba/Ataliba_Avatar.jpg"
# Sidebar configuration
with st.sidebar:
st.header("Model Selection π€")
model_type = st.selectbox("Choose Model Type", list(MODEL_OPTIONS.keys()), index=0)
selected_model = MODEL_OPTIONS[model_type]
st.header("Upload Documents π")
uploaded_file = st.file_uploader(
"Choose a PDF or XLSX file",
type=["pdf", "xlsx"],
label_visibility="collapsed"
)
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# File processing function
@st.cache_data
def process_file(uploaded_file):
if uploaded_file is None:
return ""
try:
if uploaded_file.type == "application/pdf":
pdf_reader = PyPDF2.PdfReader(uploaded_file)
return "\n".join([page.extract_text() for page in pdf_reader.pages])
elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
df = pd.read_excel(uploaded_file)
return df.to_markdown()
except Exception as e:
st.error(f"π Error processing file: {str(e)}")
return ""
# Model loading function
@st.cache_resource
def load_model(hf_token, model_type, selected_model):
try:
if not hf_token:
st.error("π Authentication required! Please provide a valid Hugging Face token.")
return None
login(token=hf_token)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_NAME, token=hf_token)
# Determine device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load model based on type
if model_type == "Full Fine-Tuned":
# Load full fine-tuned model directly
model = AutoModelForCausalLM.from_pretrained(
selected_model,
torch_dtype=torch.bfloat16,
token=hf_token
).to(device)
else:
# Load base model and apply PEFT adapter
base_model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL_NAME,
torch_dtype=torch.bfloat16,
token=hf_token
).to(device)
model = PeftModel.from_pretrained(
base_model,
selected_model,
torch_dtype=torch.bfloat16,
is_trainable=False, # Inference mode
token=hf_token
).to(device)
return model, tokenizer
except Exception as e:
st.error(f"π€ Model loading failed: {str(e)}")
return None
# Generation function with KV caching
def generate_with_kv_cache(prompt, file_context, model, tokenizer, use_cache=True):
full_prompt = f"Analyze this context:\n{file_context}\n\nQuestion: {prompt}\nAnswer:"
streamer = TextIteratorStreamer(
tokenizer,
skip_prompt=True,
skip_special_tokens=True
)
inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
generation_kwargs = {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_new_tokens": 1024,
"temperature": 0.7,
"top_p": 0.9,
"repetition_penalty": 1.1,
"do_sample": True,
"use_cache": use_cache,
"streamer": streamer
}
Thread(target=model.generate, kwargs=generation_kwargs).start()
return streamer
# Display chat messages
for message in st.session_state.messages:
try:
avatar = USER_AVATAR if message["role"] == "user" else BOT_AVATAR
with st.chat_message(message["role"], avatar=avatar):
st.markdown(message["content"])
except:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input handling
if prompt := st.chat_input("Ask your inspection question..."):
# Load model if not already loaded or if model type changed
if "model" not in st.session_state or st.session_state.get("model_type") != model_type:
model_data = load_model(HF_TOKEN, model_type, selected_model)
if model_data is None:
st.error("Failed to load model. Please check your token and try again.")
st.stop()
st.session_state.model, st.session_state.tokenizer = model_data
st.session_state.model_type = model_type
model = st.session_state.model
tokenizer = st.session_state.tokenizer
# Add user message
with st.chat_message("user", avatar=USER_AVATAR):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
# Process file
file_context = process_file(uploaded_file)
# Generate response with KV caching
if model and tokenizer:
try:
with st.chat_message("assistant", avatar=BOT_AVATAR):
start_time = time.time()
streamer = generate_with_kv_cache(prompt, file_context, model, tokenizer, use_cache=True)
response_container = st.empty()
full_response = ""
for chunk in streamer:
cleaned_chunk = chunk.replace("<think>", "").replace("</think>", "").strip()
full_response += cleaned_chunk + " "
response_container.markdown(full_response + "β", unsafe_allow_html=True)
# Calculate performance metrics
end_time = time.time()
input_tokens = len(tokenizer(prompt)["input_ids"])
output_tokens = len(tokenizer(full_response)["input_ids"])
speed = output_tokens / (end_time - start_time)
# Calculate costs (hypothetical pricing model)
input_cost = (input_tokens / 1000000) * 5 # $5 per million input tokens
output_cost = (output_tokens / 1000000) * 15 # $15 per million output tokens
total_cost_usd = input_cost + output_cost
total_cost_aoa = total_cost_usd * 1160 # Convert to AOA (Angolan Kwanza)
# Display metrics
st.caption(
f"π Input Tokens: {input_tokens} | Output Tokens: {output_tokens} | "
f"π Speed: {speed:.1f}t/s | π° Cost (USD): ${total_cost_usd:.4f} | "
f"π΅ Cost (AOA): {total_cost_aoa:.4f}"
)
response_container.markdown(full_response)
st.session_state.messages.append({"role": "assistant", "content": full_response})
except Exception as e:
st.error(f"β‘ Generation error: {str(e)}")
else:
st.error("π€ Model not loaded!") |