import argparse from sugar.sugar_utils.general_utils import str2bool from sugar.sugar_trainers.coarse_density import coarse_training_with_density_regularization if __name__ == "__main__": # Parser parser = argparse.ArgumentParser(description='Script to optimize a coarse SuGaR model, i.e. a 3D Gaussian Splatting model with surface regularization losses in density space.') parser.add_argument('-c', '--checkpoint_path', type=str, help='path to the vanilla 3D Gaussian Splatting Checkpoint to load.') parser.add_argument('-s', '--scene_path', type=str, help='path to the scene data to use.') parser.add_argument('-o', '--output_dir', type=str, default=None, help='path to the output directory.') parser.add_argument('-i', '--iteration_to_load', type=int, default=7000, help='iteration to load.') parser.add_argument('--eval', type=str2bool, default=True, help='Use eval split.') parser.add_argument('-e', '--estimation_factor', type=float, default=0.2, help='factor to multiply the estimation loss by.') parser.add_argument('-n', '--normal_factor', type=float, default=0.2, help='factor to multiply the normal loss by.') parser.add_argument('--gpu', type=int, default=0, help='Index of GPU device to use.') args = parser.parse_args() # Call function coarse_training_with_density_regularization(args)