Spaces:
Sleeping
Sleeping
import gradio as gr | |
from detection_pipeline import DetectionModel | |
if gr.NO_RELOAD: | |
model = DetectionModel() | |
preds = [] | |
def predict(image, threshold): | |
global preds | |
preds = model(image) | |
return filter_preds(image, threshold) | |
def filter_preds(image, threshold): | |
preds_ = list(filter(lambda x: x[4] > threshold/100, preds)) | |
output = model.visualize(image, preds_) | |
return output | |
with gr.Blocks() as interface: | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(label="Input", value="sample/1.jpg") | |
with gr.Column(): | |
output = gr.Image(label="Output") | |
with gr.Row(): | |
with gr.Column(): | |
threshold = gr.Slider(0, 100, 30, step=5, label="Threshold") | |
threshold.release(filter_preds, inputs=[image, threshold], outputs=output) | |
with gr.Column(): | |
button = gr.Button(value="Detect") | |
button.click(predict, [image, threshold], output) | |
if __name__ == "__main__": | |
interface.launch() |