natolambert commited on
Commit
f5220e7
1 Parent(s): 06fd8bd
Files changed (1) hide show
  1. app.py +36 -4
app.py CHANGED
@@ -23,6 +23,7 @@ def restart_space():
23
  print("Pulling evaluation results")
24
  repo = snapshot_download(
25
  local_dir=repo_dir_herm,
 
26
  repo_id=evals_repo,
27
  use_auth_token=COLLAB_TOKEN,
28
  tqdm_class=None,
@@ -31,7 +32,7 @@ repo = snapshot_download(
31
  )
32
 
33
 
34
- def avg_over_herm(dataframe):
35
  """
36
  Averages over the subsets alpacaeval, mt-bench, llmbar, refusals, hep and returns dataframe with only these columns.
37
 
@@ -42,7 +43,8 @@ def avg_over_herm(dataframe):
42
  4. Code: Includes the code subsets (hep-cpp, hep-go, hep-java, hep-js, hep-python, hep-rust)
43
 
44
  """
45
- new_df = dataframe.copy()
 
46
 
47
  # for main subsets, keys in subset_mapping, take the weighted avg by example_counts and store for the models
48
  for subset, sub_subsets in subset_mapping.items():
@@ -52,10 +54,39 @@ def avg_over_herm(dataframe):
52
  new_df[subset] = np.round(np.average(sub_data, axis=1, weights=sub_counts), 2) # take the weighted average
53
  # new_df[subset] = np.round(np.nanmean(new_df[subset_cols].values, axis=1), 2)
54
 
55
- keep_columns = ["model",] + ["model_type"] + list(subset_mapping.keys())
 
56
  # keep_columns = ["model", "average"] + subsets
57
  new_df = new_df[keep_columns]
58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  return new_df
60
 
61
  def expand_subsets(dataframe):
@@ -100,11 +131,12 @@ def length_bias_check(dataframe):
100
 
101
 
102
  herm_data = load_all_data(repo_dir_herm, subdir="eval-set").sort_values(by='average', ascending=False)
103
- herm_data_avg = avg_over_herm(herm_data).sort_values(by='Chat', ascending=False)
104
  herm_data_length = length_bias_check(herm_data).sort_values(by='Terse Bias', ascending=False)
105
  prefs_data = load_all_data(repo_dir_herm, subdir="pref-sets").sort_values(by='average', ascending=False)
106
  # prefs_data_sub = expand_subsets(prefs_data).sort_values(by='average', ascending=False)
107
 
 
 
108
  col_types_herm = ["markdown"] + ["str"] + ["number"] * (len(herm_data.columns) - 1)
109
  col_types_herm_avg = ["markdown"]+ ["str"] + ["number"] * (len(herm_data_avg.columns) - 1)
110
  cols_herm_data_length = ["markdown"] + ["number"] * (len(herm_data_length.columns) - 1)
 
23
  print("Pulling evaluation results")
24
  repo = snapshot_download(
25
  local_dir=repo_dir_herm,
26
+ ignore_patterns=["pref-sets-scores/*", "eval-set-scores/*"],
27
  repo_id=evals_repo,
28
  use_auth_token=COLLAB_TOKEN,
29
  tqdm_class=None,
 
32
  )
33
 
34
 
35
+ def avg_over_herm(dataframe_core, dataframe_prefs):
36
  """
37
  Averages over the subsets alpacaeval, mt-bench, llmbar, refusals, hep and returns dataframe with only these columns.
38
 
 
43
  4. Code: Includes the code subsets (hep-cpp, hep-go, hep-java, hep-js, hep-python, hep-rust)
44
 
45
  """
46
+ new_df = dataframe_core.copy()
47
+ dataframe_prefs = dataframe_prefs.copy()
48
 
49
  # for main subsets, keys in subset_mapping, take the weighted avg by example_counts and store for the models
50
  for subset, sub_subsets in subset_mapping.items():
 
54
  new_df[subset] = np.round(np.average(sub_data, axis=1, weights=sub_counts), 2) # take the weighted average
55
  # new_df[subset] = np.round(np.nanmean(new_df[subset_cols].values, axis=1), 2)
56
 
57
+ data_cols = list(subset_mapping.keys())
58
+ keep_columns = ["model",] + ["model_type"] + data_cols
59
  # keep_columns = ["model", "average"] + subsets
60
  new_df = new_df[keep_columns]
61
 
62
+ # selected average from pref_sets
63
+ pref_columns = ["anthropic_helpful", "mtbench_gpt4", "shp", "summarize"]
64
+ pref_data = dataframe_prefs[pref_columns].values
65
+
66
+ # add column test sets knowing the rows are not identical, take superset
67
+ dataframe_prefs["Test Sets"] = np.round(np.nanmean(pref_data, axis=1), 2)
68
+
69
+ # add column Test Sets empty to new_df
70
+ new_df["Test Sets"] = np.nan
71
+ # per row in new_df if model is in dataframe_prefs, add the value to new_df["Test Sets"]
72
+ values = []
73
+ for i, row in new_df.iterrows():
74
+ model = row["model"]
75
+ if model in dataframe_prefs["model"].values:
76
+ values.append(dataframe_prefs[dataframe_prefs["model"] == model]["Test Sets"].values[0])
77
+ # new_df.at[i, "Test Sets"] = dataframe_prefs[dataframe_prefs["model"] == model]["Test Sets"].values[0]
78
+ else:
79
+ values.append(np.nan)
80
+
81
+ new_df["Test Sets"] = values
82
+
83
+ # add total average
84
+ data_cols += ["Test Sets"]
85
+ new_df["average"] = np.round(np.nanmean(new_df[data_cols].values, axis=1), 2)
86
+
87
+ # make average third column
88
+ keep_columns = ["model", "model_type", "average"] + data_cols
89
+ new_df = new_df[keep_columns]
90
  return new_df
91
 
92
  def expand_subsets(dataframe):
 
131
 
132
 
133
  herm_data = load_all_data(repo_dir_herm, subdir="eval-set").sort_values(by='average', ascending=False)
 
134
  herm_data_length = length_bias_check(herm_data).sort_values(by='Terse Bias', ascending=False)
135
  prefs_data = load_all_data(repo_dir_herm, subdir="pref-sets").sort_values(by='average', ascending=False)
136
  # prefs_data_sub = expand_subsets(prefs_data).sort_values(by='average', ascending=False)
137
 
138
+ herm_data_avg = avg_over_herm(herm_data, prefs_data).sort_values(by='average', ascending=False)
139
+
140
  col_types_herm = ["markdown"] + ["str"] + ["number"] * (len(herm_data.columns) - 1)
141
  col_types_herm_avg = ["markdown"]+ ["str"] + ["number"] * (len(herm_data_avg.columns) - 1)
142
  cols_herm_data_length = ["markdown"] + ["number"] * (len(herm_data_length.columns) - 1)