import glob import os from collections import OrderedDict import torch class Saver(object): def __init__(self, args): self.args = args self.directory = os.path.join("run", args.train_dataset, args.checkname) self.runs = sorted(glob.glob(os.path.join(self.directory, "experiment_*"))) run_id = int(self.runs[-1].split("_")[-1]) + 1 if self.runs else 0 self.experiment_dir = os.path.join( self.directory, "experiment_{}".format(str(run_id)) ) if not os.path.exists(self.experiment_dir): os.makedirs(self.experiment_dir) def save_checkpoint(self, state, filename="checkpoint.pth.tar"): """Saves checkpoint to disk""" filename = os.path.join(self.experiment_dir, filename) torch.save(state, filename) def save_experiment_config(self): logfile = os.path.join(self.experiment_dir, "parameters.txt") log_file = open(logfile, "w") p = OrderedDict() p["train_dataset"] = self.args.train_dataset p["lr"] = self.args.lr p["epoch"] = self.args.epochs for key, val in p.items(): log_file.write(key + ":" + str(val) + "\n") log_file.close()