import streamlit as st import re import numpy as np import matplotlib.pyplot as plt from io import BytesIO import os import base64 def run_turkish(): # Başlık st.title("Note Analyzer Streamlit Uygulaması") # Uygulamanın çalışma prensibi görüntüleme durumu if "show_images" not in st.session_state: st.session_state.show_images = True # Varsayılan olarak resimler gösterilsin # Kullanıcıdan veri alma (Sidebar sabit kalıyor) st.sidebar.header("Girdi Alanları") text_input = st.sidebar.text_area("Notları Yapıştırın", height=200) # Diğer parametreler lecture_name = st.sidebar.text_input("Ders Adı", value="Ders Adı") perfect_score = st.sidebar.number_input("Sınav Puanı Üst Limiti", value=100, step=1) my_note = st.sidebar.number_input("Benim Notum", value=0.0, step=0.1) note_s_axis_diff = st.sidebar.number_input("X ekseni(notlar) 0'dan başlayıp kaçar kaçar artsın:", value=3, step=1) amount_s_axis_diff = st.sidebar.number_input("Y ekseni(notların adetleri) 0'dan başlayıp kaçar kaçar artsın:", value=5, step=1) first_step = st.sidebar.number_input("Txt dosyanızda notların başladığı indeks: ", value=0, step=1) increase_amount = st.sidebar.number_input("Txt dosyanızda kaç adet başlık(not,isim,numara,doğru,yanlış vs.) var: ", value=1, step=1) if st.sidebar.button("Analizi Çalıştır"): # Butona basıldığında resimleri gizle st.session_state.show_images = False # Resimler yalnızca show_images True ise gösterilir if st.session_state.show_images: st.subheader("Uygulama nasıl çalışır (bilgisayardan kullanılması tavsiye edilir)") image_files = ["turkish/a.jpg", "turkish/b.jpg", "turkish/c.jpg","turkish/d.jpg"] for image_file in image_files: st.image(image_file, use_container_width=True) #akldnaslkdnmllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll # Notları yükleme ve işleme işlemleri (Butona basıldıysa çalışır) if not st.session_state.show_images: if not text_input: st.error("Lütfen notları metin kutusuna yapıştırın!") else: try: content = text_input # Veriyi işleme content = content.strip() result = re.split(r'[ \n]+', content) # Strip fonksiyonu ve kaçış dizisi temizliği notes_result = [x.strip() for x in result[first_step::increase_amount] if x.strip() != '∅' and x.strip() != "NA"] notes_result = list(map(lambda x: float(x), notes_result)) notes_result = np.array(notes_result) # İstatistikler average_x = np.average(notes_result) min_x = notes_result.min() max_x = notes_result.max() std = np.std(notes_result) z_score = (my_note - average_x) / std # İstatistikleri ekrana yazdırma st.subheader("Genel Bilgiler") st.write(f"Katilimci Sayısı: {len(notes_result)}") st.write(f"En Düşük Not: {min_x:.2f}") st.write(f"En Yüksek Not: {max_x:.2f}") st.write(f"Ortalama Not: {average_x:.2f}") st.write(f"Standart Sapma: {std:.2f}") st.write(f"Z-Skoru: {z_score:.2f}") # Grafik oluşturma st.subheader("Not Dağılım Grafiği") unique_values, counts = np.unique(notes_result, return_counts=True) plt.figure(figsize=(10, 6),dpi=150) bars = plt.bar(unique_values, counts, width=0.3) plt.axvline(x=average_x, color='red', linestyle='--') plt.text(average_x + 1.5, max(counts), 'Ortalama Not', color='red', rotation=0, ha='center', va='bottom') if my_note in unique_values: plt.text(my_note, counts[unique_values == my_note][0], 'Benim\nNotum', color='green', rotation=0, ha='center', va='bottom') for bar in bars: if bar.get_x() <= my_note < bar.get_x() + bar.get_width(): bar.set_color('green') plt.title(f'{lecture_name} Not Sayıları Grafiği') plt.xlabel('Notlar') plt.ylabel('Adet') plt.xticks(range(0, int(perfect_score)+note_s_axis_diff, note_s_axis_diff), rotation=90) plt.yticks(range(0, max(counts)+amount_s_axis_diff, amount_s_axis_diff), rotation=0) # Grafik bilgileri info_text = ( f"Katilimci sayısı: {len(notes_result)}\n" f"En düşük not: {min_x:.2f}\n" f"En yüksek not: {max_x:.2f}\n" f"Benim notum: {my_note:.2f}\n" f"Ortalama not: {average_x:.2f}\n" f"Standart sapma: {std:.2f}\n" f"Z-skoru: {z_score:.2f}" ) plt.text( 1.05 * max(unique_values), 0.8 * max(counts), info_text, fontsize=10, color="black", ha="left", va="top", bbox=dict(boxstyle="round,pad=0.3", edgecolor="blue", facecolor="lightgrey") ) plt.subplots_adjust(left=0.055, bottom=0.065, right=0.90, top=0.962, wspace=0.2, hspace=0.2) # Sağ alt köşeye "Generated by Note Analyzer" metni ekle plt.text( 0.99, -0.15, # Sağ alt köşeye konumlandır "Generated by Note Analyzer at HuggingFace aliicemill/NoteAnalyzer space", fontsize=8, color="gray", ha="right", va="top", transform=plt.gca().transAxes # Koordinatları grafiğe göre ayarla ) # Kenar boşluklarını optimize et plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9) # Grafik gösterimi st.pyplot(plt) # Grafik indirme bağlantısı buf = BytesIO() plt.savefig(buf, format="png",bbox_inches='tight') buf.seek(0) st.download_button( label="Grafiği İndir", data=buf, file_name="not_dagilimi.png", mime="image/png" ) except Exception as e: st.error(f"Hata: {e}") # Web sayfasının altına isim ve tarih st.markdown("---") st.write("Developed by: Ali Cemil Özdemir") st.write("Date: 01.12.2024") st.write("For feedback and suggestions, you can contact me at alicemilozdemir7@gmail.com") # Grafiklerin sağ alt köşesine yazı ekleme st.markdown("""

Created with Note Analyzer

""", unsafe_allow_html=True) def run_arabic(): # العنوان st.title("تطبيق محلل الدرجات باستخدام Streamlit") # حالة عرض الصور if "show_images" not in st.session_state: st.session_state.show_images = True # الافتراضي: يتم عرض الصور # منطقة إدخال البيانات في الشريط الجانبي st.sidebar.header("حقول الإدخال") # اختيار رفع ملف أو إدخال النصوص يدويًا text_input = st.sidebar.text_area("قم بلصق الدرجات هنا", height=200) # المعلمات الأخرى lecture_name = st.sidebar.text_input("اسم المادة", value="اسم المادة") perfect_score = st.sidebar.number_input("الدرجة الكاملة", value=100, step=1) my_note = st.sidebar.number_input("درجتي", value=0.0, step=0.1) note_s_axis_diff = st.sidebar.number_input("المحور X (الملاحظات) يبدأ من الصفر ويزداد بالزيادات:", value=3, step=1) amount_s_axis_diff = st.sidebar.number_input("المحور Y (عدد الدرجات) يبدأ من الصفر ويزداد بأي رقم:", value=5, step=1) first_step = st.sidebar.number_input("الفهرس الذي تبدأ منه الملاحظات في ملف txt الخاص بك:", value=0, step=1) increase_amount = st.sidebar.number_input("كم عدد العناوين (ملاحظة، الاسم، الرقم، صحيح، خطأ، وما إلى ذلك) الموجودة في ملف txt الخاص بك:", value=1, step=1) if st.sidebar.button("تشغيل التحليل"): # إخفاء الصور عند النقر على الزر st.session_state.show_images = False # عرض الصور فقط إذا كانت show_images صحيحة if st.session_state.show_images: st.subheader("كيفية عمل التطبيق(ينصح باستخدامه من الكمبيوتر)") # قائمة بأسماء ملفات الصور بالترتيب image_files = ["arabic/a.png", "arabic/b.png", "arabic/c.png"] # عرض الصور واحدة تحت الأخرى for image_file in image_files: st.image(image_file, use_container_width=True) # تحميل ومعالجة الدرجات (يعمل فقط إذا تم النقر على الزر) if not st.session_state.show_images: if input_method == "رفع ملف" and uploaded_file is None: st.error("يرجى رفع ملف!") elif input_method == "نسخ ولصق" and not text_input: st.error("يرجى لصق الدرجات في مربع النص!") else: try: # قراءة المحتوى من الملف أو مربع النص if uploaded_file: content = uploaded_file.read().decode("utf-8") elif text_input: content = text_input # معالجة البيانات content = content.strip() result = re.split(r'[ \n]+', content) # تنظيف وتصنيف البيانات notes_result = [x.strip() for x in result[first_step::increase_amount] if x.strip() != '∅' and x.strip() != "NA"] notes_result = list(map(lambda x: float(x), notes_result)) notes_result = np.array(notes_result) # الإحصائيات average_x = np.average(notes_result) min_x = notes_result.min() max_x = notes_result.max() std = np.std(notes_result) z_score = (my_note - average_x) / std # عرض الإحصائيات st.subheader("المعلومات العامة") st.write(f"عدد المشاركين: {len(notes_result)}") st.write(f"أقل درجة: {min_x:.2f}") st.write(f"أعلى درجة: {max_x:.2f}") st.write(f"متوسط الدرجات: {average_x:.2f}") st.write(f"الانحراف المعياري: {std:.2f}") st.write(f"درجة Z: {z_score:.2f}") # إنشاء الرسم البياني st.subheader("رسم توزيع الدرجات") unique_values, counts = np.unique(notes_result, return_counts=True) plt.figure(figsize=(10, 6),dpi=150) bars = plt.bar(unique_values, counts, width=0.3) plt.axvline(x=average_x, color='red', linestyle='--') plt.text(average_x + 1.5, max(counts), 'متوسط الدرجات', color='red', rotation=0, ha='center', va='bottom') if my_note in unique_values: plt.text(my_note, counts[unique_values == my_note][0], 'درجتي', color='green', rotation=0, ha='center', va='bottom') for bar in bars: if bar.get_x() <= my_note < bar.get_x() + bar.get_width(): bar.set_color('green') plt.title(f'رسم توزيع الدرجات لمادة {lecture_name}') plt.xlabel('الدرجات') plt.ylabel('التكرار') plt.xticks(range(0, int(perfect_score)+note_s_axis_diff, note_s_axis_diff), rotation=90) plt.yticks(range(0, max(counts)+amount_s_axis_diff, amount_s_axis_diff), rotation=0) # إضافة معلومات إلى الرسم البياني info_text = ( f"عدد المشاركين: {len(notes_result)}\n" f"أقل درجة: {min_x:.2f}\n" f"أعلى درجة: {max_x:.2f}\n" f"درجتي: {my_note:.2f}\n" f"متوسط الدرجات: {average_x:.2f}\n" f"الانحراف المعياري: {std:.2f}\n" f"درجة Z: {z_score:.2f}" ) plt.text( 1.05 * max(unique_values), 0.8 * max(counts), info_text, fontsize=10, color="black", ha="left", va="top", bbox=dict(boxstyle="round,pad=0.3", edgecolor="blue", facecolor="lightgrey") ) plt.subplots_adjust(left=0.055, bottom=0.065, right=0.90, top=0.962, wspace=0.2, hspace=0.2) # Sağ alt köşeye "Generated by Note Analyzer" metni ekle plt.text( 0.99, -0.15, # Sağ alt köşeye konumlandır "Generated by Note Analyzer at HuggingFace aliicemill/NoteAnalyzer space", fontsize=8, color="gray", ha="right", va="top", transform=plt.gca().transAxes # Koordinatları grafiğe göre ayarla ) plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9) # عرض الرسم البياني st.pyplot(plt) # زر لتحميل الرسم البياني buf = BytesIO() plt.savefig(buf, format="png",bbox_inches='tight') buf.seek(0) st.download_button( label="تحميل الرسم البياني", data=buf, file_name="score_distribution.png", mime="image/png" ) except Exception as e: st.error(f"خطأ: {e}") # التذييل st.markdown("---") st.write("تم التطوير بواسطة: علي جميل أوزدمير") st.write("التاريخ: 01.12.2024") st.write("للتعليقات والاقتراحات، يمكنك التواصل عبر: alicemilozdemir7@gmail.com") # إضافة ملاحظة أسفل الزاوية اليمنى st.markdown("""

تم الإنشاء باستخدام محلل الدرجات

""", unsafe_allow_html=True) def run_english(): # Title st.title("Note Analyzer Streamlit Application") # Image display state if "show_images" not in st.session_state: st.session_state.show_images = True # Default: images are shown # Sidebar input area st.sidebar.header("Input Fields") text_input = st.sidebar.text_area("Paste the Notes Here", height=200) # Other parameters lecture_name = st.sidebar.text_input("Course Name", value="Course Name") perfect_score = st.sidebar.number_input("Maximum Exam Score", value=100, step=1) my_note = st.sidebar.number_input("My Score", value=0.0, step=0.1) note_s_axis_diff = st.sidebar.number_input("By what value should the x-axis increase starting from 0?", value=3, step=1) amount_s_axis_diff = st.sidebar.number_input("By what value should the y-axis increase starting from 0?", value=5, step=1) first_step = st.sidebar.number_input("What is the index where notes start in your txt file:", value=0, step=1) increase_amount = st.sidebar.number_input("How many headings (note, name, number, correct, incorrect etc.) are there in your txt file:", value=1, step=1) if st.sidebar.button("Run Analysis"): # Hide images when the button is clicked st.session_state.show_images = False # Show images only if show_images is True if st.session_state.show_images: st.subheader("How the Application Works(It is recommended to use from a computer)") # List the image filenames in order image_files = ["english/a.png", "english/b.png", "english/c.png", "english/d.png"] # Display images one below the other for image_file in image_files: st.image(image_file, use_container_width=True) # Load and process notes (Only works if the button is clicked) if not st.session_state.show_images: if input_method == "Upload File" and uploaded_file is None: st.error("Please upload a file!") elif input_method == "Copy-Paste" and not text_input: st.error("Please paste the notes into the text area!") else: try: # Read content from file or text area if uploaded_file: content = uploaded_file.read().decode("utf-8") elif text_input: content = text_input # Process the data content = content.strip() result = re.split(r'[ \n]+', content) # Clean and filter the data notes_result = [x.strip() for x in result[first_step::increase_amount] if x.strip() != '∅' and x.strip() != "NA"] notes_result = list(map(lambda x: float(x), notes_result)) notes_result = np.array(notes_result) # Statistics average_x = np.average(notes_result) min_x = notes_result.min() max_x = notes_result.max() std = np.std(notes_result) z_score = (my_note - average_x) / std # Display statistics st.subheader("General Information") st.write(f"Number of Participants: {len(notes_result)}") st.write(f"Lowest Score: {min_x:.2f}") st.write(f"Highest Score: {max_x:.2f}") st.write(f"Average Score: {average_x:.2f}") st.write(f"Standard Deviation: {std:.2f}") st.write(f"Z-Score: {z_score:.2f}") # Create plot st.subheader("Score Distribution Graph") unique_values, counts = np.unique(notes_result, return_counts=True) plt.figure(figsize=(10, 6),dpi=150) bars = plt.bar(unique_values, counts, width=0.3) plt.axvline(x=average_x, color='red', linestyle='--') plt.text(average_x + 1.5, max(counts), 'Average Score', color='red', rotation=0, ha='center', va='bottom') if my_note in unique_values: plt.text(my_note, counts[unique_values == my_note][0], 'My\nScore', color='green', rotation=0, ha='center', va='bottom') for bar in bars: if bar.get_x() <= my_note < bar.get_x() + bar.get_width(): bar.set_color('green') plt.title(f'{lecture_name} Score Distribution') plt.xlabel('Scores') plt.ylabel('Count') plt.xticks(range(0, int(perfect_score)+note_s_axis_diff, note_s_axis_diff), rotation=90) plt.yticks(range(0, max(counts)+amount_s_axis_diff, amount_s_axis_diff), rotation=0) # Add graph information info_text = ( f"Number of participants: {len(notes_result)}\n" f"Lowest score: {min_x:.2f}\n" f"Highest score: {max_x:.2f}\n" f"My score: {my_note:.2f}\n" f"Average score: {average_x:.2f}\n" f"Standard deviation: {std:.2f}\n" f"Z-score: {z_score:.2f}" ) plt.text( 1.05 * max(unique_values), 0.8 * max(counts), info_text, fontsize=10, color="black", ha="left", va="top", bbox=dict(boxstyle="round,pad=0.3", edgecolor="blue", facecolor="lightgrey") ) plt.subplots_adjust(left=0.055, bottom=0.065, right=0.90, top=0.962, wspace=0.2, hspace=0.2) # Sağ alt köşeye "Generated by Note Analyzer" metni ekle plt.text( 0.99, -0.15, # Sağ alt köşeye konumlandır "Generated by Note Analyzer at HuggingFace aliicemill/NoteAnalyzer space", fontsize=8, color="gray", ha="right", va="top", transform=plt.gca().transAxes # Koordinatları grafiğe göre ayarla ) plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9) # Display the plot st.pyplot(plt) # Download button for the plot buf = BytesIO() plt.savefig(buf, format="png",bbox_inches='tight') buf.seek(0) st.download_button( label="Download Graph", data=buf, file_name="score_distribution.png", mime="image/png" ) except Exception as e: st.error(f"Error: {e}") # Footer st.markdown("---") st.write("Developed by: Ali Cemil Özdemir") st.write("Date: 01.12.2024") st.write("For feedback and suggestions, you can contact me at alicemilozdemir7@gmail.com") # Add a note at the bottom right corner of the page st.markdown("""

Created with Note Analyzer

""", unsafe_allow_html=True) # Session State'i başlat if "language" not in st.session_state: st.session_state.language = None # Dil seçimi ekranı if st.session_state.language is None: st.title("(Double Click) Select language / (Çift Tıkla) Dili seçin / اختر اللغة (انقر نقرًا مزدوجًا)") col1, col2, col3 = st.columns(3) with col1: if st.button("Türkçe"): st.session_state.language = "turkish" with col2: if st.button("English"): st.session_state.language = "english" with col3: if st.button("عربي"): st.session_state.language = "arabic" # Seçilen dilin programını çalıştır else: if st.session_state.language == "turkish": run_turkish() elif st.session_state.language == "english": run_english() elif st.session_state.language == "arabic": run_arabic()