#!/usr/bin/env python # coding: utf-8 # author : @ Ali Cemil Özdemir # Model that predicts car prices. #import libraries import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score,mean_squared_error from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.preprocessing import StandardScaler,OneHotEncoder # upload data df=pd.read_excel('cars.xls') # create axis X=df.drop('Price',axis=1) y=df[['Price']] # split data as train and test data. X_train,X_test,y_train,y_test=train_test_split(X,y, test_size=0.2, random_state=42) # preprocessing preproccer=ColumnTransformer(transformers=[('num',StandardScaler(), ['Mileage','Cylinder','Liter','Doors']), ('cat',OneHotEncoder(),['Make','Model','Trim','Type'])]) # modelling model=LinearRegression() pipe=Pipeline(steps=[('preprocessor',preproccer), ('model',model)]) pipe.fit(X_train,y_train) y_pred=pipe.predict(X_test) mean_squared_error(y_test,y_pred)**0.5,r2_score(y_test,y_pred) # web interface import streamlit as st def price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather): input_data=pd.DataFrame({ 'Make':[make], 'Model':[model], 'Trim':[trim], 'Mileage':[mileage], 'Type':[car_type], 'Car_type':[car_type], 'Cylinder':[cylinder], 'Liter':[liter], 'Doors':[doors], 'Cruise':[cruise], 'Sound':[sound], 'Leather':[leather] }) prediction=pipe.predict(input_data)[0] return prediction st.title("Car Price Prediction :red_car: @Ali Cemil Özdemir") st.write("Enter Car Details to predict the price of the car") st.image("ozellikler_CarPred.png", caption="Car Features", use_column_width=True) make=st.selectbox("Make",df['Make'].unique()) model=st.selectbox("Model",df[df['Make']==make]['Model'].unique()) trim=st.selectbox("Trim",df[(df['Make']==make) & (df['Model']==model)]['Trim'].unique()) mileage=st.number_input("Mileage",200,60000) car_type=st.selectbox("Type",df['Type'].unique()) cylinder=st.selectbox("Cylinder",df['Cylinder'].unique()) liter=st.number_input("Liter",1,6) doors=st.selectbox("Doors",df['Doors'].unique()) cruise=st.radio("Cruise",[True,False]) sound=st.radio("Sound",[True,False]) leather=st.radio("Leather",[True,False]) if st.button("Predict"): pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather) st.write("Predicted Price :red_car: $",round(pred[0],2))