alibabasglab commited on
Commit
8182519
·
verified ·
1 Parent(s): dea7f0b

Delete network_wrapper.py

Browse files
Files changed (1) hide show
  1. network_wrapper.py +0 -176
network_wrapper.py DELETED
@@ -1,176 +0,0 @@
1
- import argparse
2
- import yamlargparse
3
- import torch.nn as nn
4
-
5
- class network_wrapper(nn.Module):
6
- """
7
- A wrapper class for loading different neural network models for tasks such as
8
- speech enhancement (SE), speech separation (SS), and target speaker extraction (TSE).
9
- It manages argument parsing, model configuration loading, and model instantiation
10
- based on the task and model name.
11
- """
12
-
13
- def __init__(self):
14
- """
15
- Initializes the network wrapper without any predefined model or arguments.
16
- """
17
- super(network_wrapper, self).__init__()
18
- self.args = None # Placeholder for command-line arguments
19
- self.config_path = None # Path to the YAML configuration file
20
- self.model_name = None # Model name to be loaded based on the task
21
-
22
- def load_args_se(self):
23
- """
24
- Loads the arguments for the speech enhancement task using a YAML config file.
25
- Sets the configuration path and parses all the required parameters such as
26
- input/output paths, model settings, and FFT parameters.
27
- """
28
- self.config_path = 'config/inference/' + self.model_name + '.yaml'
29
- parser = yamlargparse.ArgumentParser("Settings")
30
-
31
- # General model and inference settings
32
- parser.add_argument('--config', help='Config file path', action=yamlargparse.ActionConfigFile)
33
- parser.add_argument('--mode', type=str, default='inference', help='Modes: train or inference')
34
- parser.add_argument('--checkpoint-dir', dest='checkpoint_dir', type=str, default='checkpoints/FRCRN_SE_16K', help='Checkpoint directory')
35
- parser.add_argument('--input-path', dest='input_path', type=str, help='Path for noisy audio input')
36
- parser.add_argument('--output-dir', dest='output_dir', type=str, help='Directory for enhanced audio output')
37
- parser.add_argument('--use-cuda', dest='use_cuda', default=1, type=int, help='Enable CUDA (1=True, 0=False)')
38
- parser.add_argument('--num-gpu', dest='num_gpu', type=int, default=1, help='Number of GPUs to use')
39
-
40
- # Model-specific settings
41
- parser.add_argument('--network', type=str, help='Select SE models: FRCRN_SE_16K, MossFormer2_SE_48K')
42
- parser.add_argument('--sampling-rate', dest='sampling_rate', type=int, default=16000, help='Sampling rate')
43
- parser.add_argument('--one-time-decode-length', dest='one_time_decode_length', type=int, default=60, help='Max segment length for one-pass decoding')
44
- parser.add_argument('--decode-window', dest='decode_window', type=int, default=1, help='Decoding chunk size')
45
-
46
- # FFT parameters for feature extraction
47
- parser.add_argument('--window-len', dest='win_len', type=int, default=400, help='Window length for framing')
48
- parser.add_argument('--window-inc', dest='win_inc', type=int, default=100, help='Window shift for framing')
49
- parser.add_argument('--fft-len', dest='fft_len', type=int, default=512, help='FFT length for feature extraction')
50
- parser.add_argument('--num-mels', dest='num_mels', type=int, default=60, help='Number of mel-spectrogram bins')
51
- parser.add_argument('--window-type', dest='win_type', type=str, default='hamming', help='Window type: hamming or hanning')
52
-
53
- # Parse arguments from the config file
54
- self.args = parser.parse_args(['--config', self.config_path])
55
-
56
- def load_args_ss(self):
57
- """
58
- Loads the arguments for the speech separation task using a YAML config file.
59
- This method sets parameters such as input/output paths, model configurations,
60
- and encoder/decoder settings for the MossFormer2-based speech separation model.
61
- """
62
- self.config_path = 'config/inference/' + self.model_name + '.yaml'
63
- parser = yamlargparse.ArgumentParser("Settings")
64
-
65
- # General model and inference settings
66
- parser.add_argument('--config', default=self.config_path, help='Config file path', action=yamlargparse.ActionConfigFile)
67
- parser.add_argument('--mode', type=str, default='inference', help='Modes: train or inference')
68
- parser.add_argument('--checkpoint-dir', dest='checkpoint_dir', type=str, default='checkpoints/FRCRN_SE_16K', help='Checkpoint directory')
69
- parser.add_argument('--input-path', dest='input_path', type=str, help='Path for mixed audio input')
70
- parser.add_argument('--output-dir', dest='output_dir', type=str, help='Directory for separated audio output')
71
- parser.add_argument('--use-cuda', dest='use_cuda', default=1, type=int, help='Enable CUDA (1=True, 0=False)')
72
- parser.add_argument('--num-gpu', dest='num_gpu', type=int, default=1, help='Number of GPUs to use')
73
-
74
- # Model-specific settings for speech separation
75
- parser.add_argument('--network', type=str, help='Select SS models: MossFormer2_SS_16K')
76
- parser.add_argument('--sampling-rate', dest='sampling_rate', type=int, default=16000, help='Sampling rate')
77
- parser.add_argument('--num-spks', dest='num_spks', type=int, default=2, help='Number of speakers to separate')
78
- parser.add_argument('--one-time-decode-length', dest='one_time_decode_length', type=int, default=60, help='Max segment length for one-pass decoding')
79
- parser.add_argument('--decode-window', dest='decode_window', type=int, default=1, help='Decoding chunk size')
80
-
81
- # Encoder settings
82
- parser.add_argument('--encoder_kernel-size', dest='encoder_kernel_size', type=int, default=16, help='Kernel size for Conv1D encoder')
83
- parser.add_argument('--encoder-embedding-dim', dest='encoder_embedding_dim', type=int, default=512, help='Embedding dimension from encoder')
84
-
85
- # MossFormer model parameters
86
- parser.add_argument('--mossformer-squence-dim', dest='mossformer_sequence_dim', type=int, default=512, help='Sequence dimension for MossFormer')
87
- parser.add_argument('--num-mossformer_layer', dest='num_mossformer_layer', type=int, default=24, help='Number of MossFormer layers')
88
-
89
- # Parse arguments from the config file
90
- self.args = parser.parse_args(['--config', self.config_path])
91
-
92
- def load_args_tse(self):
93
- """
94
- Loads the arguments for the target speaker extraction (TSE) task using a YAML config file.
95
- Parameters include input/output paths, CUDA configurations, and decoding parameters.
96
- """
97
- self.config_path = 'config/inference/' + self.model_name + '.yaml'
98
- parser = yamlargparse.ArgumentParser("Settings")
99
-
100
- # General model and inference settings
101
- parser.add_argument('--config', default=self.config_path, help='Config file path', action=yamlargparse.ActionConfigFile)
102
- parser.add_argument('--mode', type=str, default='inference', help='Modes: train or inference')
103
- parser.add_argument('--checkpoint-dir', dest='checkpoint_dir', type=str, default='checkpoint_dir/AV_MossFormer2_TSE_16K', help='Checkpoint directory')
104
- parser.add_argument('--input-path', dest='input_path', type=str, help='Path for mixed audio input')
105
- parser.add_argument('--output-dir', dest='output_dir', type=str, help='Directory for separated audio output')
106
- parser.add_argument('--use-cuda', dest='use_cuda', default=1, type=int, help='Enable CUDA (1=True, 0=False)')
107
- parser.add_argument('--num-gpu', dest='num_gpu', type=int, default=1, help='Number of GPUs to use')
108
-
109
- # Model-specific settings for target speaker extraction
110
- parser.add_argument('--network', type=str, help='Select TSE models(currently supports AV_MossFormer2_TSE_16K)')
111
- parser.add_argument('--sampling-rate', dest='sampling_rate', type=int, default=16000, help='Sampling rate (currently supports 16 kHz)')
112
- parser.add_argument('--network_reference', type=dict, help='a dictionary that contains the parameters of auxilary reference signal')
113
- parser.add_argument('--network_audio', type=dict, help='a dictionary that contains the network parameters')
114
-
115
- # Decode parameters for streaming or chunk-based decoding
116
- parser.add_argument('--one-time-decode-length', dest='one_time_decode_length', type=int, default=60, help='Max segment length for one-pass decoding')
117
- parser.add_argument('--decode-window', dest='decode_window', type=int, default=1, help='Chunk length for streaming')
118
-
119
- # Parse arguments from the config file
120
- self.args = parser.parse_args(['--config', self.config_path])
121
-
122
- def __call__(self, task, model_name):
123
- """
124
- Calls the appropriate argument-loading function based on the task type
125
- (e.g., 'speech_enhancement', 'speech_separation', or 'target_speaker_extraction').
126
- It then loads the corresponding model based on the selected task and model name.
127
-
128
- Args:
129
- - task (str): The task type ('speech_enhancement', 'speech_separation', 'target_speaker_extraction').
130
- - model_name (str): The name of the model to load (e.g., 'FRCRN_SE_16K').
131
-
132
- Returns:
133
- - self.network: The instantiated neural network model.
134
- """
135
-
136
- self.model_name = model_name # Set the model name based on user input
137
-
138
- # Load arguments specific to the task
139
- if task == 'speech_enhancement':
140
- self.load_args_se() # Load arguments for speech enhancement
141
- elif task == 'speech_separation':
142
- self.load_args_ss() # Load arguments for speech separation
143
- elif task == 'target_speaker_extraction':
144
- self.load_args_tse() # Load arguments for target speaker extraction
145
- else:
146
- # Print error message if the task is unsupported
147
- print(f'{task} is not supported, please select from: '
148
- 'speech_enhancement, speech_separation, or target_speaker_extraction')
149
- return
150
-
151
- print(self.args) # Display the parsed arguments
152
- self.args.task = task
153
- self.args.network = self.model_name # Set the network name to the model name
154
-
155
- # Initialize the corresponding network based on the selected model
156
- if self.args.network == 'FRCRN_SE_16K':
157
- from networks import CLS_FRCRN_SE_16K
158
- self.network = CLS_FRCRN_SE_16K(self.args) # Load FRCRN model
159
- elif self.args.network == 'MossFormer2_SE_48K':
160
- from networks import CLS_MossFormer2_SE_48K
161
- self.network = CLS_MossFormer2_SE_48K(self.args) # Load MossFormer2 model
162
- elif self.args.network == 'MossFormerGAN_SE_16K':
163
- from networks import CLS_MossFormerGAN_SE_16K
164
- self.network = CLS_MossFormerGAN_SE_16K(self.args) # Load MossFormerGAN model
165
- elif self.args.network == 'MossFormer2_SS_16K':
166
- from networks import CLS_MossFormer2_SS_16K
167
- self.network = CLS_MossFormer2_SS_16K(self.args) # Load MossFormer2 for separation
168
- elif self.args.network == 'AV_MossFormer2_TSE_16K':
169
- from networks import CLS_AV_MossFormer2_TSE_16K
170
- self.network = CLS_AV_MossFormer2_TSE_16K(self.args) # Load AV MossFormer2 model for target speaker extraction
171
- else:
172
- # Print error message if no matching network is found
173
- print("No network found!")
174
- return
175
-
176
- return self.network # Return the instantiated network model