import gradio as gr from LdmZhPipeline import LDMZhTextToImagePipeline import torch import numpy as np from PIL import Image device = "cuda" if torch.cuda.is_available() else "cpu" model_id = "alibaba-pai/pai-diffusion-food-large-zh" pipe_text2img = LDMZhTextToImagePipeline.from_pretrained(model_id, use_auth_token="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") pipe_text2img = pipe_text2img.to(device) def infer_text2img(prompt, guide, steps): output = pipe_text2img([prompt]*9, guidance_scale=guide, num_inference_steps=steps, use_sr=True) images = output.images[0] return images with gr.Blocks() as demo: examples = [ ["番茄炒蛋"], ["小炒黄牛肉"], ["蛋炒饭"], ] with gr.Row(): with gr.Column(scale=1, ): image_out = gr.Image(label = '输出(output)') with gr.Column(scale=1, ): prompt = gr.Textbox(label = '提示词(prompt)') submit_btn = gr.Button("生成图像(Generate)") with gr.Row(scale=0.5 ): guide = gr.Slider(2, 15, value = 7, label = '文本引导强度(guidance scale)') steps = gr.Slider(10, 50, value = 20, step = 1, label = '迭代次数(inference steps)') ex = gr.Examples(examples, fn=infer_text2img, inputs=[prompt, guide, steps], outputs=image_out) submit_btn.click(fn = infer_text2img, inputs = [prompt, guide, steps], outputs = image_out) demo.queue(concurrency_count=1, max_size=8).launch()