#-*- encoding:utf-8 -*- import torch from pytorch_lightning.callbacks import Callback from torch import nn class LitEma(nn.Module): def __init__(self, model, decay=0.9999, use_num_upates=True): super().__init__() if decay < 0.0 or decay > 1.0: raise ValueError('Decay must be between 0 and 1') self.m_name2s_name = {} self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32)) self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates else torch.tensor(-1,dtype=torch.int)) for name, p in model.named_parameters(): if p.requires_grad: #remove as '.'-character is not allowed in buffers s_name = name.replace('.','') self.m_name2s_name.update({name:s_name}) self.register_buffer(s_name,p.clone().detach().data) self.collected_params = [] def forward(self,model): decay = self.decay if self.num_updates >= 0: self.num_updates += 1 decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates)) one_minus_decay = 1.0 - decay with torch.no_grad(): m_param = dict(model.named_parameters()) shadow_params = dict(self.named_buffers()) for key in m_param: if m_param[key].requires_grad: sname = self.m_name2s_name[key] shadow_params[sname] = shadow_params[sname].type_as(m_param[key]) shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key])) else: assert not key in self.m_name2s_name def copy_to(self, model): m_param = dict(model.named_parameters()) shadow_params = dict(self.named_buffers()) for key in m_param: if m_param[key].requires_grad: m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data) else: assert not key in self.m_name2s_name def store(self, parameters): """ Save the current parameters for restoring later. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be temporarily stored. """ self.collected_params = [param.clone() for param in parameters] def restore(self, parameters): """ Restore the parameters stored with the `store` method. Useful to validate the model with EMA parameters without affecting the original optimization process. Store the parameters before the `copy_to` method. After validation (or model saving), use this to restore the former parameters. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored parameters. """ for c_param, param in zip(self.collected_params, parameters): param.data.copy_(c_param.data) class EMACallback(Callback): def __init__(self, decay=0.9999): self.decay = decay self.shadow_params = {} def on_train_start(self, trainer, pl_module): # initialize shadow parameters for original models total_ema_cnt = 0 for name, param in pl_module.named_parameters(): if name not in self.shadow_params: self.shadow_params[name] = param.data.clone() else: # already in dict, maybe load from checkpoint pass print('will calc ema for param: %s' % name) total_ema_cnt += 1 print('total_ema_cnt=%d' % total_ema_cnt) def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx): # Update the shadow params at the end of each epoch for name, param in pl_module.named_parameters(): assert name in self.shadow_params new_average = (1.0 - self.decay) * param.data + self.decay * self.shadow_params[name] self.shadow_params[name] = new_average.clone() def on_save_checkpoint(self, trainer, pl_module, checkpoint): # Save EMA parameters in the checkpoint checkpoint['ema_params'] = self.shadow_params def on_load_checkpoint(self, trainer, pl_module, checkpoint): # Restore EMA parameters from the checkpoint if 'ema_params' in checkpoint: self.shadow_params = checkpoint.get('ema_params', {}) for k in self.shadow_params: self.shadow_params[k] = self.shadow_params[k].cuda() print('load shadow params from checkpoint, cnt=%d' % len(self.shadow_params)) else: print('ema_params is not in checkpoint')