import streamlit as st from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter import os from langchain import LLMChain from langchain_google_genai import GoogleGenerativeAIEmbeddings from langchain.llms import HuggingFaceHub from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings import google.generativeai as genai from langchain.vectorstores import FAISS from langchain_google_genai import ChatGoogleGenerativeAI from langchain.chains.question_answering import load_qa_chain from langchain.prompts import PromptTemplate import time from dotenv import load_dotenv genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("HF_TOKEN") def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text def get_text_chunks(text): text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=200) chunks = text_splitter.split_text(text) return chunks def get_vector_store(text_chunks): HF_TOKEN = os.getenv("HF_TOKEN") embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=HF_TOKEN, model_name="BAAI/bge-base-en-v1.5") vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) vector_store.save_local("faiss_index") def get_conversational_chain(): prompt_template = """ Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in provided context just say, "answer is not available in the Provided PDF", don't provide the wrong answer\n\n Context:\n {context}?\n Question: \n{question}\n Answer: """ # model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.1) model = HuggingFaceHub(repo_id="google/gemma-1.1-7b-it", model_kwargs={"temperature": 0.2,"max_new_tokens":512, "return_only_answer":True}) prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) chain = LLMChain(llm=model, prompt=prompt) return chain def user_input(user_question): embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) docs = new_db.similarity_search(user_question) chain = get_conversational_chain() response = chain({"context": docs, "question": user_question}, return_only_outputs=True) return response # def response_generator(response): # for word in response.split(): # yield word + " " # time.sleep(0.05) # Streamlit app initialization st.title("Chat With PDF 📄") if 'messages' not in st.session_state: st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF and ask me anything about its content.'}] with st.sidebar: st.title("Menu:") uploaded_file = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True) if st.button("Submit & Process"): with st.spinner("Processing..."): raw_text = get_pdf_text(uploaded_file) text_chunks = get_text_chunks(raw_text) get_vector_store(text_chunks) st.success("Done") user_prompt = st.chat_input("Ask me anything about the content of the PDF:") if user_prompt: st.session_state.messages.append({'role': 'user', "content": user_prompt}) response = user_input(user_prompt) # answer = response_generator(response) st.session_state.messages.append({'role': 'assistant', "content": response}) for message in st.session_state.messages: with st.chat_message(message['role']): st.write(message['content'])