# Thanks: https://huggingface.co/spaces/stabilityai/stable-diffusion-3-medium import spaces import os import gradio as gr import numpy as np import random import torch from diffusers import StableDiffusion3Pipeline from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline device = "cuda" dtype = torch.float16 repo = "stabilityai/stable-diffusion-3.5-large" t2i = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.bfloat16, token=os.environ["TOKEN"]).to(device) model = AutoModelForCausalLM.from_pretrained( "microsoft/Phi-3.5-mini-instruct", device_map="cuda", torch_dtype=torch.bfloat16, trust_remote_code=True, ) tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct") upsampler = pipeline( "text-generation", model=model, tokenizer=tokenizer, ) generation_args = { "max_new_tokens": 300, "return_full_text": False, "temperature": 0.7, "do_sample": True, "top_p": 0.95 } MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1344 @spaces.GPU def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): messages = [ {"role": "user", "content": "クールなアニメ風の女の子"}, {"role": "assistant", "content": "An anime style illustration of a cool-looking teenage girl with an edgy, confident expression. She has piercing eyes, a slight smirk, and colorful hair that flows in the wind. She wears a trendy punk-inspired outfit with a leather jacket, ripped jeans, and combat boots. The background has an urban nighttime feel with city lights and graffiti to match her rebellious vibe. The colors are vibrant with high contrast to give an impactful look. The overall style captures her undeniable coolness and fearless attitude."}, {"role": "user", "content": "実写風の女子高生"}, {"role": "assistant", "content": "A photorealistic image of a female high school student standing on a city street. She is wearing a traditional Japanese school uniform, consisting of a navy blue blazer, a white blouse, and a knee-length plaid skirt. Her black hair is styled in a neat shoulder-length bob, and she carries a red backpack. The setting is an urban backdrop with cherry blossoms in bloom, suggesting early spring. The lighting is soft and natural, enhancing the realism of the scene."}, {"role": "user", "content": prompt }, ] output = upsampler(messages, **generation_args) upsampled_prompt=output[0]['generated_text'] print(upsampled_prompt) if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = t2i( prompt = upsampled_prompt, negative_prompt = negative_prompt, guidance_scale = guidance_scale, num_inference_steps = num_inference_steps, width = width, height = height, generator = generator ).images[0] return image, seed, upsampled_prompt examples = [ "美味しい肉", "馬に乗った宇宙飛行士", "アニメ風の美少女", "女子高生の写真", "寿司でできた家に入っているコーギー", "バナナとアボカドが戦っている様子" ] css=""" #col-container { margin: 0 auto; max-width: 580px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # 日本語が入力できる SD3.5 Large """) with gr.Row(): prompt = gr.Text( label="プロンプト", show_label=False, max_lines=1, placeholder="作りたい画像の特徴を入力してください", container=False, ) run_button = gr.Button("実行", scale=0) result = gr.Image(label="結果", show_label=False) generated_prompt = gr.Textbox(label="生成に使ったプロンプト", show_label=False, interactive=False) with gr.Accordion("詳細設定", open=False): negative_prompt = gr.Text( label="ネガティブプロンプト", max_lines=1, placeholder="画像から排除したい要素を入力してください", ) seed = gr.Slider( label="乱数のシード", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="ランダム生成", value=True) with gr.Row(): width = gr.Slider( label="横", minimum=256, maximum=MAX_IMAGE_SIZE, step=64, value=1024+512, ) height = gr.Slider( label="縦", minimum=256, maximum=MAX_IMAGE_SIZE, step=64, value=1024+512, ) with gr.Row(): guidance_scale = gr.Slider( label="プロンプトの忠実さ", minimum=0.0, maximum=10.0, step=0.1, value=3.5, ) num_inference_steps = gr.Slider( label="推論回数", minimum=1, maximum=50, step=1, value=28, ) gr.Examples( examples = examples, inputs = [prompt] ) gr.on( triggers=[run_button.click, prompt.submit, negative_prompt.submit], fn = infer, inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs = [result, seed, generated_prompt] ) demo.launch()